M.TECH/AEIE/1ST SEM /MATH 5101/2015

Advanced Mathematical Methods (MATH 5101)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

		Group - A	rds as far as practicable.
		Choice Type Questions	()
 Choose the cor 	rrect alternatives for	the following:	10 x 1=10
	of the eigen values of	f a square matrix A is	CD of those
(a) 0	(b) 1	(c) detA	(d) none of these.
(ii) A basis of a	vector space is		
	nimal spanning subse	et	
(b) a ma	aximal spanning subs	et	
(c) a lin	early independent su	bset	
(d) a lin	early dependent subs		
(iii) Let V and	W be finite dimensio	nal vector spaces over a	
(iii) Let V and	W be finite dimensio	set.	field F and $T: V \to W$ is a linear of T is (d) 0.
(iii) Let V and mapping. It (a) 1	W be finite dimension f dimV=3 and dimens (b) 2	nal vector spaces over a ion of KerT=2, then Rank (c) 3	of T is
(iii) Let V and mapping. It (a) 1	W be finite dimension f dimV=3 and dimens (b) 2	nal vector spaces over a ion of KerT=2, then Rank (c) 3	of T is
(iii) Let V and mapping. It (a) 1	W be finite dimension f dimV=3 and dimens (b) 2	set. nal vector spaces over a sion of KerT=2, then Rank (c) 3 s of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9 \end{bmatrix}$	of T is
(iii) Let V and mapping. It (a) 1 (iv) If λ_i , $i = 1, 2, \dots$	W be finite dimension f dimV=3 and dimens (b) 2 3 are the eigen values	set. nal vector spaces over a sion of KerT=2, then Rank (c) 3 s of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9 \end{bmatrix}$	of T is
(iii) Let V and mapping. It (a) 1	W be finite dimension f dimV=3 and dimens (b) 2 3 are the eigen values	nal vector spaces over a ion of KerT=2, then Rank (c) 3	of T is

mapping. Then

- (a) KerT is a subspace of W
- (b) KerT is a subspace of V
- (c) ImT is a subspace of V
- (d) none of these.

(vi) In general, Lagrange's Multiplier method is(a) Necessary and Sufficient(b) Sufficient

- (c) Necessary
- (d) None of the above.

MATH 5101

M.TECH/AEIE/1ST SEM /MATH 5101/201	MITECH	I/AFIF/1ST	SEM	/MATH	5101/201
------------------------------------	--------	------------	-----	-------	----------

- (vii) If the feasible set of an optimization problem is unbounded, then
 - (a) no finite optimum point exists.
 - (b) it has an infinite number of feasible points.
 - (c) the existence of a finite optimum point cannot be assured.
 - (d) None of these.
- (viii) The set $S=\{(x,y): x^2+y^2=25\}$ is
 - (a) Concave
- (b) Convex
- (c) both (a) and (b)
- (d) none of these.
- (ix) The critical points of the function $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$ are
 - (a) (6,0), (8,0), (1,5), (5,1)
- (b) (6,0), (4,0), (5,1), (5,-1)
- (c) (6,0), (4,0), (1,5), (1,-5)
- (d) (6,0), (8,0), (-1,-5), (1,5).

- (x) The dual of a dual is
 - (a) dual
- (b) primal
- (c) neither primal nor dual
- (d) none of these.

Group - B

- 2.(a) Let V be the vector space of function $f: R \to R$. Show that $W = \{f(x): f(-x) = -f(x), \forall x \in R\}$ is a subspace of V.
 - (b) Determine whether or not the vectors u=(1,1,2), v=(2,3,1) and w=(4,5,5) in \mathbb{R}^3 are linearly independent.
 - 6 + 6 = 12
- 3.(a) Use Gram-Schmidt process to obtain an orthogonal basis from the basis set $\{(1,0,1),(1,1,1),(1,3,4)\}$ of the Euclidean space \Re^3 with standard inner product.
 - (b) Prove that, the set of vectors $\{(2,1,1),(1,2,2),(1,1,1)\}$ is linearly dependent in \Re^3 .

6 + 6 = 12

Group - C

- 4.(a) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ which maps the basis vectors (0,1,1),(1,0,1),(1,1,0) of \mathbb{R}^3 to (1,1,1),(1,1,1),(1,1,1) respectively.
 - (b) Verify the rank-nullity theorem for T.

6 + 6 = 12

- 5.(a) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T(1,1) = (1,3) and T(-1,1) = (3,1). Find T(a,b), for any $(a,b) \in \mathbb{R}^2$.
 - (b) Is a subset of a linearly dependent set always linearly dependent? Justify your answer, if required with suitable example.

6 + 6 = 12

MATH 5101

M.TECH/AEIE/1ST SEM /MATH 5101/2015

Group - D

6.(a) Solve the following non-linear programming problem using Lagrange multiplier method:

Maximize
$$f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$

Subject to $x_1 + x_2 + x_3 = 20$
 $x_1, x_2, x_3 \ge 0$

(b) Verify whether the function $f(x_1, x_2) = 2x_1^3 - 6x_2^2$ is concave or convex.

8 + 4 = 12

7. Consider the following problem:

Minimize
$$f = (x_1 - 1)^2 - x_2^2$$

Subject to $\begin{cases} x_1^3 - 2x_2 \le 0, \\ x_1^3 + 2x_2 \le 0, \end{cases}$

Determine whether the constraint qualification and the Kuhn-Tucker conditions are satisfied at the optimal point.

12

Group - E

8.(a) Solve the following LPP using simplex method:

Minimize
$$Z= x_1-3x_2+2x_3$$

Subject to $3x_1-x_2+2x_3 \le 7$
 $-2x_1+4x_2 \le 12$
 $-4x_1+3x_2+8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

(b) Find the dual of the following problem:

Maximize
$$Z=2x_1+3x_2-4x_3$$

Subject to $3x_1+x_2+x_3 \le 2$
 $-4x_1+3x_3 \ge 4$
 $x_1-5x_2+x_3=5$
 $x_1, x_2 \ge 0$ and x_3 is unrestricted

8 + 4 = 12

9.(a) Use simplex method to solve the following LPP:

(b) Construct the dual of the following LPP:

8 + 4 = 12