

**VLSI DESIGN, TESTING AND VERIFICATION
(VLSI 5202)**

Time Allotted : 2½ hrs

Full Marks : 60

Figures out of the right margin indicate full marks.

***Candidates are required to answer Group A and
any 4 (four) from Group B to E, taking one from each group.***

Candidates are required to give answer in their own words as far as practicable.

Group - A

1. Answer any twelve:

$12 \times 1 = 12$

Choose the correct alternative for the following

- (i) Memory which needs Dynamic Refresh is
 - (a) Flash
 - (b) Latch
 - (c) SRAM
 - (d) DRAM
- (ii) For a 6 Address Bits and 8 Data I/O Bits SRAM Memory, Number of SRAM Bit-Cells are
 - (a) 256
 - (b) 512
 - (c) 1024
 - (d) 128
- (iii) Putting More VIAs in a Contact Helps to
 - (a) Reduce Contact Capacitance
 - (b) Reduce Contact Resistance
 - (c) Increase Contact Capacitance
 - (d) Increases Contact Resistance
- (iv) In Nano Technology, Most Popular Interconnect Material is
 - (a) Gold
 - (b) Silver
 - (c) Copper
 - (d) Platinum
- (v) In a Flip-Flop Based System, T_{cq} of Generating Flop is 20ps, T_{setup} of Sampling Flop is 30ps, T_{logic} of Combinational Logic Cone is 150ps for worst Timing Path. Maximum Frequency the System can operate is (ignore Clock Skew)
 - (a) 10 GHz
 - (b) 8 GHz
 - (c) 5 GHz
 - (d) 2 GHz
- (vi) A Timing Path In a Flip-Flop Based System has Hold Margin of +20ps. If Cycle time of Clock is Decreased by 20ps, then New Hold Margin will be
 - (a) +40ps
 - (b) +20ps
 - (c) 0ps
 - (d) -20ps
- (vii) Function $Y = ABC + D$ can be implemented by using CMOS Logic having Minimum Number of Transistor as
 - (a) 8
 - (b) 10
 - (c) 12
 - (d) 14
- (viii) A 4 Input NAND Gate has $W_n = 4\text{um}$ for Each NMOS, the W_{neff} value is
 - (a) 4um
 - (b) 2um
 - (c) 1um
 - (d) 16um
- (ix) D-Algorithm is Directly Related to
 - (a) DFT
 - (b) Scan
 - (c) ATPG
 - (d) BIST

(x) Input Test Vector to find Stuck-at-0 at output of 2 Input AND Gate is
(a) 00 (b) 01 (c) 10 (d) 11

Fill in the blanks with the correct word

- (xi) ATPG Stands for _____.
- (xii) DPM Stands for _____.
- (xiii) The Transistor used in Flash Memory Bit-Cell is Called _____.
- (xiv) Full Form of STA is _____.
- (xv) With Increase of Threshold Voltage of NMOS and PMOS, Delay of CMOS Inverter

Group - B

2. (a) For a Memory of 1024 Entries and 64 Bits, what is best possible Folding scheme? How Many Row Address, How Many Column Address and what is Column Mixing Scheme? *[(CO1)(Evaluate/HOCQ)]*
(b) Draw 6 Transistor SRAM Cell with Interface Signals. *[(CO1)(Understand/LOCQ)]*

8 + 4 = 12

3. (a) Implement 7 to 128 Decoder using Optimized Number of Logic Gates. *[(CO1)(Evaluate/HOCQ)]*
(b) Explain Programmed NOR Based Mask ROM Operation with Circuit Diagram. *[(CO1)(Analyse/IOCQ)]*

6 + 6 = 12

Group - C

4. (a) Explain Different Components of Interconnect Capacitance with Diagram
[(CO2)(Understand/LOCQ)]

(b) Prove that wire RC Delay is Proportional to Square of the Length of the Wire.
[(CO2)(Evaluate/HOCQ)]

6 + 6 = 12

5. (a) 1mm Wire with 400mohms/um and 0.2fF/um has to be Modelled using 3 PI Segments. What will be Individual Resistance and Capacitance Component, explain with Circuit Diagram.
[(CO2)(Evaluate/HOCQ)]

(b) Using Elmore Delay Model, prove that Wire Delay Can be Reduced maximum way if Driver Side Resistance and Receiver Side Capacitance is Reduced.
[(CO2)(Evaluate/HOCQ)]

6 + 6 = 12

Group - D

6. (a) Explain with Waveform D \rightarrow Q Timing Path and CLK \rightarrow Q Timing Path for a Level 1 D-Latch. $[(CO3)(Analyse/IOCQ)]$

(b) For a Flipflop Based System, T_{CQ} of Generating Flop = 30ps, T_{LOGIC} of Combinational Circuit = 250ps, T_{SETUP} of Sampling Flop = 20ps, T_{HOLD} of Sampling Flop = 60ps. T_{CYCLE} of CLK = 400ps. Clock Skew = 40ps. What is Setup Margin for the Timing Path? $[(C04)(Evaluate/HOCQ)]$

6 + 6 = 12

7. (a) Explain How Timing Characterization of Digital Gate is Performed? $[(C03)(Analyse/IOCQ)]$

(b) Draw Circuit of 2 to 1 Mux using Transmission Gate. $[(C03)(Understand/LOCQ)]$

(c) Explain H-Tree Clock Network with Circuit Diagram. $[(C05)(Analyse/IOCQ)]$

4 + 4 + 4 = 12

Group - E

8. (a) What is the Test Vector to Detect Stuck-at-0 at Output of 3 Input NOR Gate? $[(C06)(Evaluate/HOCQ)]$

(b) Consider a 2 Input CMOS NOR Gate with A, B as Inputs and Y as Output. What is the Test Vector to Detect whether there is Stuck-Short in the NMOS Connected to A Input? $[(C06)(Evaluate/HOCQ)]$

6 + 6 = 12

9. (a) Why Post Silicon Debug is Needed? $[(C06)(Understand/LOCQ)]$

(b) What are Sources of Process Variation? $[(C06)(Understand/LOCQ)]$

(c) Explain Transistor Stuck-Open Fault with an Example. $[(C06)(Analyse/IOCQ)]$

4 + 4 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	22.9	25	52.1

