

**ANALOG VLSI IC DESIGN**  
**(VLSI 5201)**

Time Allotted : 2½ hrs

Full Marks : 60

*Figures out of the right margin indicate full marks.*

*Candidates are required to answer Group A and  
any 4 (four) from Group B to E, taking one from each group.*

*Candidates are required to give answer in their own words as far as practicable.*

**Group - A**

1. Answer any twelve:

**12 × 1 = 12**

*Choose the correct alternative for the following*

- (i) Linear amplification can be obtained from common-source MOSFET amplifier when biased in
  - (a) Saturation region
  - (b) Linear region
  - (c) Subthreshold region
  - (d) only exactly at  $V_{DS} = V_{DS(sat)}$
- (ii) Practical current mirror circuits deviate from ideal behaviour due to
  - (a) Channel-length modulation effect
  - (b) Threshold voltage offset between two transistors
  - (c) Imperfect geometrical matching
  - (d) All of the above
- (iii) The substrate of the NMOS transistor is connected to
  - (a) Most negative supply in the system
  - (b) ground
  - (c) threshold voltage
  - (d) most positive supply in the system
- (iv) Multiplication in the time domain corresponds to
  - (a) Multiplication in the frequency domain
  - (b) Convolution in the frequency domain
  - (c) Addition in the frequency domain
  - (d) Division in the frequency domain
- (v) For a good design of MOSFET, the relationship between the thermal noise arising from the gate resistance and the channel should satisfy
  - (a)  $4kT \frac{R_G}{3} \ll \frac{4kT\gamma}{g_m}$
  - (b)  $4kT \frac{R_G}{3} \gg \frac{4kT\gamma}{g_m}$
  - (c)  $4kT \frac{R_G}{3} \ll 4kT\gamma g_m$
  - (d)  $4kT \frac{R_G}{3} = \frac{4kT\gamma}{g_m}$
- (vi) The error tolerance at the output of S/H (Sample / Hold) depends on the amplifier's
  - (a) Offset
  - (b) Gain Error
  - (c) Linearity
  - (d) All of the above
- (vii) A 4-bit R-2R digital-to-analog converter has a reference of 5volts. What is the analog output for the input code 0101
  - (a) 0.3125V
  - (b) 3.125V
  - (c) 0.78125V
  - (d) -3.125V
- (viii) Considering VREF = 1V, as the digital word increases by 1 bit, the output of the ideal 3-bit DAC should jump by
  - (a) 0.25V
  - (b) 0.0625V
  - (c) 0.33V
  - (d) 0.125V
- (ix) The frequency of the signal applied to the switched-capacitor circuit should satisfy the the criteria
  - (a)  $f_{signal} \ll f_{clock}$
  - (b)  $f_{signal} \gg f_{clock}$
  - (c)  $f_{signal} = 2f_{clock}$
  - (d)  $f_{clock} = 2f_{signal}$
- (x) The number of inverter stages in a ring oscillator is given by
  - (a) 1
  - (b) 2
  - (c) 3
  - (d) Anyone of (a), (b), (c)

*Fill in the blanks with the correct word*

- (xi) An ideal differential amplifier should have common-mode voltage gain \_\_\_\_.
- (xii) A good current mirror should have \_\_\_\_ (high / low) output resistance.
- (xiii) Integral Nonlinearity (INL) is one important \_\_\_\_ (static / dynamic) characteristics of the DAC.
- (xiv) The full form of PLL is \_\_\_\_.
- (xv) Switched capacitors accumulate the \_\_\_\_\_ noise of the switches.

## Group - B

2. (a) Briefly explain the voltage transfer characteristics of a basic resistive load differential amplifier circuit. *[(CO2)(Understand/LOCQ)]*  
 (b) Deduce the ICMR of this type of circuit. *[(CO2)(Analyze/LOCQ)]*  
 (c) Consider the circuit in Fig. 1 in which M2 is twice as wide as M1. Calculate the small-signal gain if the bias values of  $V_{in1}$  and  $V_{in2}$  are equal. *[(CO2)(Evaluate/HOCQ)]*

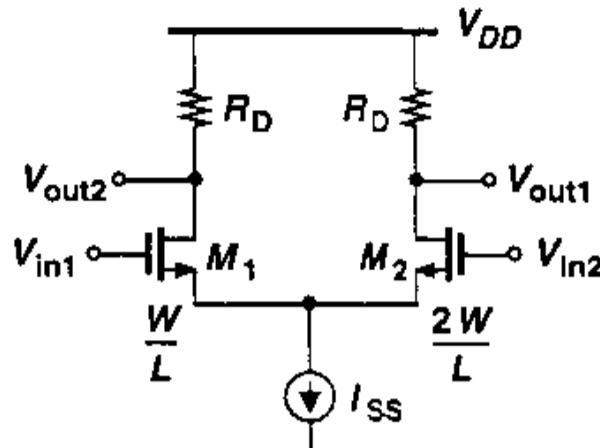



Fig. 1

4 + 5 + 3 = 12

3. (a) Briefly explain the current –voltage characteristics of a current sink and source. *[(CO1)(Apply/LOCQ)]*  
 (b) Derive the small-signal voltage gain of a push-pull amplifier from its small-signal equivalent circuit. *[(CO2)(Analyze/LOCQ)]*  
 (c) Consider a discrete common-source MOSFET amplifier shown in Fig. 2. Determine its small-signal voltage gain, its input resistance and the largest allowable input signal. The transistor has  $V_{th} = 1.5V$ ,  $k_n'(W/L) = 0.25mA/V^2$ , and  $V_A = 50V$ . Assume the coupling capacitors to be sufficiently large so as to act as short circuits at the signal frequencies of interest. *[(CO1)(Evaluate/HOCQ)]*

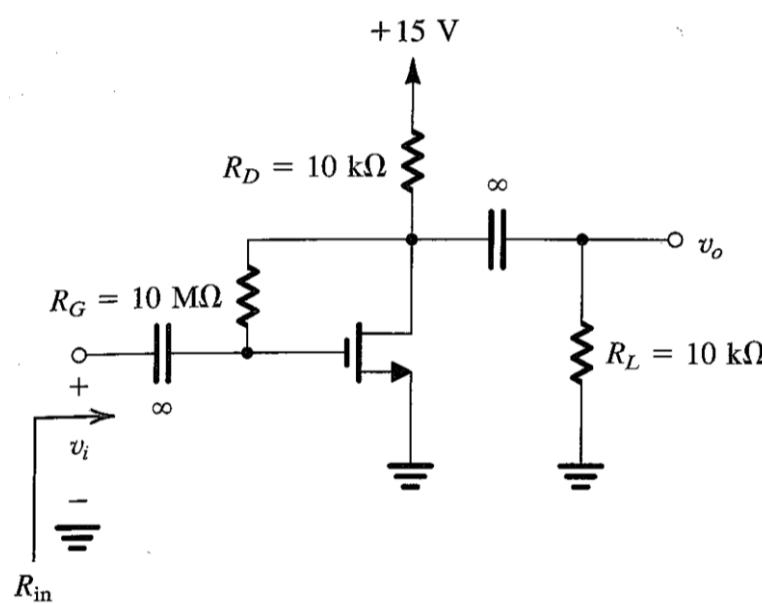



Fig. 2

4 + 5 + 3 = 12

## Group - C

4. (a) Briefly discuss the effects of nonlinearity in RF circuits. *[(CO3)(Understand/LOCQ)]*  
 (b) An analog multiplier mixes its two inputs  $x_1(t)$  and  $x_2(t)$ , ideally producing an output  $y(t) = kx_1(t)x_2(t)$ , where k is a constant. Assume,  $x_1(t) = A_1\cos\omega_1 t$  and  $x_2(t) = A_2\cos\omega_2 t$ . (i) If the mixer is ideal, determine the frequency components, (ii) If the input port sensing  $x_2(t)$  suffers from third-order nonlinearity, determine the output frequency components. *[(CO3)(Apply/LOCQ)]*  
 (c) In most circuits, one terminal of the inductor(s) is at ac ground. Which terminal of the structure should be grounded in Fig. 3. *[(CO3)(Apply/LOCQ)]*

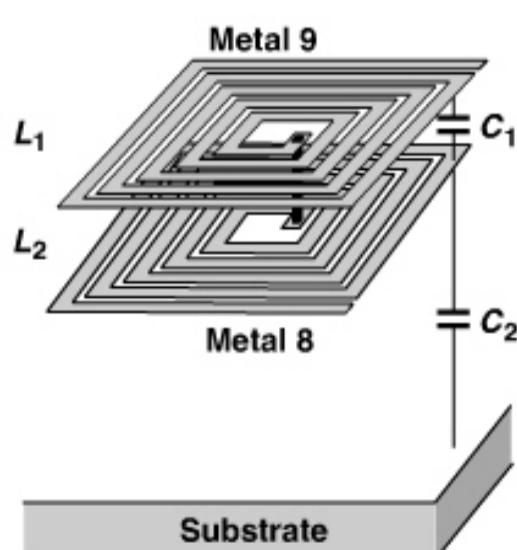
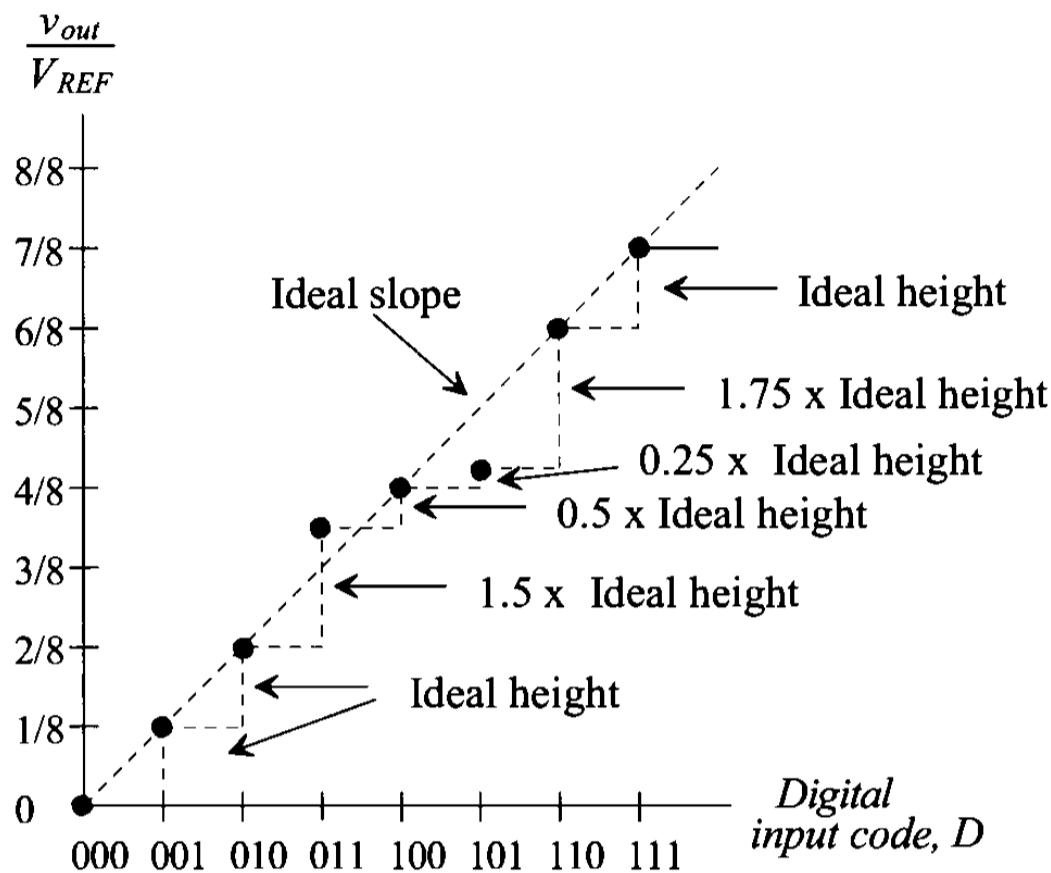



Fig. 3

4 + 5 + 3 = 12

5. (a) Briefly explain the phenomenon of cross-modulation. *[(CO3)(Understand/LOCQ)]*

(b) Suppose an interferer contains phase modulation but not amplitude modulation. Does cross modulation occur in this case? Justify. [(CO3)(Apply/IOCQ)]


(c) A Low-Noise amplifier senses a  $-80\text{dBm}$  signal at  $2.410\text{GHz}$  and two  $-20\text{dBm}$  interferers at  $2.420\text{GHz}$  and  $2.430\text{GHz}$ . What  $IIP_3$  is required if the InterModulation (IM) must remain  $20\text{dB}$  below the signal? For simplicity, assume  $50\Omega$  interfaces at the input and output. [(CO3)(Evaluate/HOCQ)]

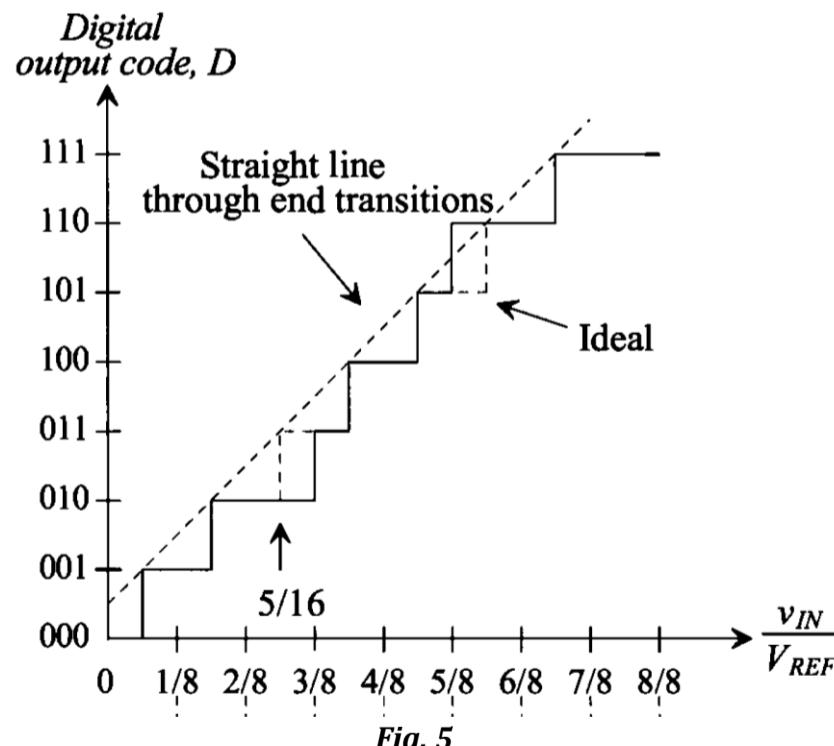
**4 + 3 + 5 = 12**

### Group - D

6. (a) Explain the *INL* and *DNL* of a digital-to-analog converter graphically. [(CO4)(Understand/LOCQ)]

(b) Determine the *DNL* for the 3-bit nonideal DAC whose transfer curve is shown in the Fig. 4. Assume that  $V_{REF} = 5V$ . [(CO4)(Apply/IOCQ)]




**Fig. 4**

(c) Draw the *DNL* curve for the 3-bit nonideal DAC. [(CO4)(Evaluate/HOCQ)]

**4 + 4 + 4 = 12**

7. (a) Determine the resolution for a *DAC* if the output voltage is desired to change in  $1\text{mV}$  increments while using a reference voltage of  $5V$ . [(CO4)(Apply/IOCQ)]

(b) Determine the *INL* for the *ADC* whose transfer curve is illustrated in Fig. 5. Assume that  $V_{REF} = 5V$ . [(CO4)(Apply/IOCQ)]



**Fig. 5**

(c) Draw the Quantization error ( $Q_e$ ) in units of *LSBs*. [(CO4)(Evaluate/HOCQ)]

**4 + 4 + 4 = 12**

### Group - E

8. (a) Mention the advantages of the switched-capacitor circuits. [(CO5)(Understand/LOCQ)]

(b) Emulate the resistor equivalent of the parallel switched capacitor circuit. [(CO5)(Apply/IOCQ)]

(c) Design a parallel switched capacitor circuit which will emulate  $1\text{M}\Omega$  resistor and the clock frequency is  $100\text{KHz}$ . Determine the value of capacitance. [(CO5)(Apply/LOCQ)]

**4 + 5 + 3 = 12**

9. (a) Explain the Barkhausen criteria for oscillation.

[(CO6)(Understand/LOCQ)]

(b) Analyze the stability of two-pole amplifier system with proper graphical illustration.

[(CO6)(Analyze/IOCQ)]

(c) Determine the minimum voltage required voltage gain per stage in the four-stage oscillator shown in Fig. 6. How many signal phases are provided by the circuit?

[(CO6)(Evaluate/HOCQ)]

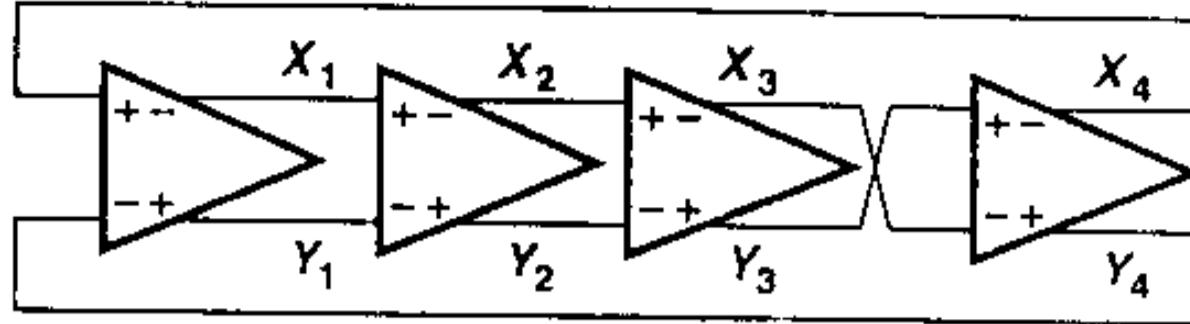



Fig. 6

$$4 + 3 + 5 = 12$$

| Cognition Level         | LOCQ  | IOCQ  | HOCQ |
|-------------------------|-------|-------|------|
| Percentage distribution | 36.46 | 38.54 | 25   |