

ADVANCED DSP AND APPLICATIONS (ECEN 5202)

Time Allotted : 2½ hrs

Full Marks : 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

1. Answer any twelve: **$12 \times 1 = 12$**

Choose the correct alternative for the following

(i) The step response of LTI system when the impulse response $h(n)$ is unit step $u(n)$ is
(a) $n+1$ (b) $n-1$ (c) n (d) n^2

(ii) If R_1 is the ROC of $x_1(n)$ and R_2 is the ROC of $x_2(n)$, then the ROC of $x_1(n)$ convoluted $x_2(n)$ is
(a) $R_1 + R_2$ (b) $R_1 \cap R_2$ (c) $R_1 - R_2$ (d) $R_1 \cup R_2$

(iii) The N -point DFT of a finite length signal $x(n) = \delta(n)$ is
(a) 0 (b) 1 (c) z^{-1} (d) W_N

(iv) If $x(n) = \{1, 4, 5, 3, 2, 7\}$ is a periodic sequence starting at $n=0$, with periodicity $N=8$, what should be the value of $x(25)$?
(a) 5 (b) 2 (c) 4 (d) 7

(v) The order of a finite length filter having transfer function $3 + 2z^{-2} + 5z^{-4} + 4z^{-8}$
(a) 9 (b) 8 (c) 10 (d) 4

(vi) Which of the following is the formula of symmetric impulse response of FIR filter?
(a) $h(n) = h(N-1-n)$ (b) $h(n) = -h(N-1-n)$
(c) $h(n) = h(N-1+n)$ (d) $h(n) = h(N-1/n)$

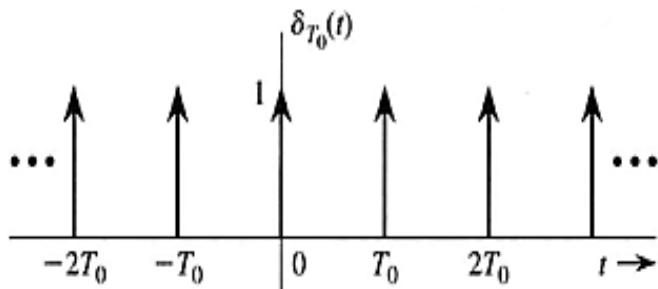
(vii) The effect of windowing on a signal spectrum can be
(a) reduced resolution (b) leakage
(c) both (a) and (b) (d) none of the above

(viii) Wavelet Transform of time domain signal $x(t)$ results in
(a) Frequency domain signal (b) Time domain Signal
(c) Time and Frequency domain signal (d) None of the choices are correct.

(ix) If $y(n) = x(n/2)$, system is using
(a) Quantization (b) Interpolation
(c) Decimation (d) None of the mentioned

(x) A signal $x(n)$ is downsampled by a factor M . The output $y(n)$ of the downampler is given as
 (a) $Mx(n)$ (b) $x(n/M)$ (c) $(1/M)x(n)$ (d) $x(nM)$

Fill in the blanks with the correct word


(xi) The ratio of z transformation of output to z-transform of input is called _____ of the system.
 (xii) The number of complex multiplications required for computation of a 32-point DFT is _____.
 (xiii) The processing of signal at different sampling rates is called _____.
 (xiv) If $W_8^{50} = W_x^{100}$, then what is the value of x is _____.
 (xv) The main lobe width of length M Hamming window is _____.

Group - B

2. (a) Two discrete time signal $x(n)$ and $h(n)$ are both nonzero only for $n = 0, 1, 2$ and are zero otherwise. It is given that $x(0)=1$, $x(1) = 2$, $x(2) = 1$ and $h(0) = 1$. If $y(n)$ be the linear convolution of $x(n)$ and $h(n)$, then find the value of expression $10 y(3) + y(4)$ where $y(1) = 3$ and $y(2) = 4$. [(CO1)(Analyse/LOCQ)]
 (b) Evaluate the convolution of two sequences $h(n)=(0.5)^n u(n)$, $x(n)=3^n u(n)$ [(CO1)(Evaluate/HOCQ)]
 (c) Establish the relationship between fourier transform $X(e^{j\omega})$ and z-transform $X(z)$. [(CO1)(Understand/LOCQ)]

6 + 4 + 2 = 12

3. (a) Find Inverse z-transformation of $X(z) = \log(1-az^{-1})$ using differentiation property. [(CO1)(Apply/LOCQ)]
 (b) Find the exponential Fourier series for the wave form shown below

(c) Prove the power of the energy signal is zero over infinite time. [(CO1)(Analyse/LOCQ)]

4 + 4 + 4 = 12

Group - C

4. (a) Explain the role of zero padding. Give few examples where we use zero padding. [(CO4)(Remember/LOCQ)]
 (b) Explain how do we find out DFT of a sequence in matrix method. [(CO4)(Understand/LOCQ)]

(c) Calculate 4 point DFT of $x(n)=\cos(\pi/3)n$ $[(CO4)(Apply/IOCQ)]$
4 + 3 + 5 = 12

5. (a) Consider the length-8 sequence defined for $0 \leq n \leq 7$, $x(n)=\{1, -1, -3, 0, 1, -1\}$ \uparrow
with an 8-point DFT. Evaluate the following functions of $X(k)$ without computing DFT.

(a) $X(0)$ (b) $\sum_{k=0}^7 X(k)$ (c) $\sum_{k=0}^7 |X(k)|^2$

$[(CO4)(Analyse/IOCQ)]$

(b) Explain the computational complexity of N-point DFT. Also explain how FFT can help reduce the same. $[(CO4)(Remember/LOCQ)]$
8 + 4 = 12

Group - D

6. (a) Compare between IIR Digital filter and FIR Digital filter. $[(CO5)(Analyse/IOCQ)]$
(b) Explain linear phase response characteristics of FIR filter. $[(CO5)(Remember/LOCQ)]$
(c) Given a system with impulse response

$h(n) = \{2, 1, 1, 2\}$

\uparrow

Prove that the system has linear phase response. $[(CO5)(Apply/IOCQ)]$

4 + 4 + 4 = 12

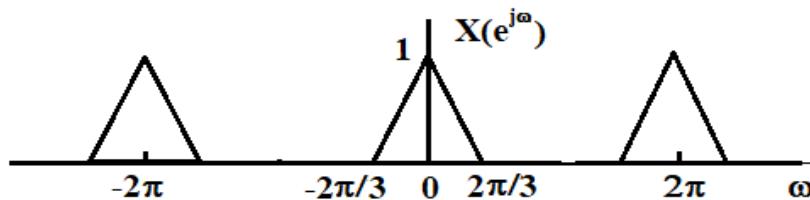
7. (a) Determine the frequency response of the non-causal Hamming window, which is given as

$$w_{han}(n) = \begin{cases} 0.54 + 0.46\cos\left(\frac{2\pi n}{M-1}\right) & -\frac{M-1}{2} \leq n \leq \frac{M-1}{2} \\ 0 & \text{otherwise} \end{cases}$$

$[(CO5)(Apply/IOCQ)]$

$[(CO4)(Remember/LOCQ)]$

6 + 6 = 12


Group - E

8. (a) Explain briefly about wavelet transformation. $[(CO6)(Remember/LOCQ)]$
(b) Obtain the polyphase decompositions of the IIR digital system having the following transfer function: $[(CO3)(Analyse/HOCQ)]$

$$H(z) = \frac{1-4z^{-1}}{1+5z^{-1}}$$

6 + 6 = 12

9. (a) Consider the sequence $x(n)$ with $X(e^{j\omega})$ as shown in fig. below. Let $x(n)$ be obtained at the sampling rate of F_s . Convert the sampling rate of $x(n)$ to $F_s' = (\frac{2}{3})F_s$ using multirate building blocks and plot the spectrum of the output signal.

$[(CO3)(Analyse/IOCQ)]$
 $[(CO3)(Remember/LOCQ)]$
8 + 4 = 12

(b) Explain briefly about downsampling.

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	34.37	55.21	10.42