

CRYPTOGRAPHY AND NETWORK SECURITY
(MCA1232)

Time Allotted : 2½ hrs

Full Marks : 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

1. Answer any twelve:

$12 \times 1 = 12$

Choose the correct alternative for the following

- (i) Which of the following is a mechanism used to achieve data integrity in a secure communication channel?
 - (a) Encryption
 - (b) Hashing
 - (c) Access Control
 - (d) Digital Signatures
- (ii) Which of the following best defines the discrete logarithm problem?
 - (a) Given $a^x \equiv b \pmod{p}$, find x
 - (b) Given two numbers a and b , find the greatest common divisor $\text{gcd}(a,b)$
 - (c) Given a number a , find its modular inverse
 - (d) Given a prime p , find the multiplicative inverse of p
- (iii) If \emptyset denotes Euler's totient function, then value of $\emptyset(37)$ is
 - (a) 24
 - (b) 37
 - (c) 36
 - (d) 1
- (iv) What is the primary vulnerability in symmetric key encryption?
 - (a) It relies on large prime numbers
 - (b) The key used for encryption must be kept secret, and if the key is compromised, the entire system is at risk
 - (c) It uses complex algorithms that are computationally expensive
 - (d) The encryption process is very slow
- (v) Which of the following is true about the RC4 stream cipher?
 - (a) RC4 uses a fixed-size key and a fixed-size block for encryption
 - (b) RC4 is a symmetric stream cipher that operates on variable-length keys
 - (c) RC4 is based on asymmetric encryption
 - (d) RC4 is faster than AES and is widely used for secure email encryption
- (vi) The security of the Diffie-Hellman Key Exchange relies on which of the following mathematical problems?
 - (a) Integer factorization problem
 - (b) Discrete logarithm problem
 - (c) Elliptic curve point multiplication problem
 - (d) RSA factorization problem

(vii) In the RSA algorithm, we select 2 random large values 'p' and 'q'. Which of the following is the property of 'p' and 'q'?

(a) p and q should be divisible by $\Phi(n)$ (b) p and q should be co-prime
 (c) p and q should be prime (d) p/q should give no remainder

(viii) What is the maximum length of the message (in bits) that can be taken by SHA-512?

(a) 2^{128} (b) 2^{256}
 (c) 2^{64} (d) 2^{192}

(ix) _____ uses the idea of certificate trust levels.

(a) X.509 (b) PGP
 (c) KDC (d) none

(x) _____ provide security at the transport layer.

(a) SSL (b) TLS
 (c) either (a) or (b) (d) both (a) and (b)

Fill in the blanks with the correct word

(xi) _____ ciphers can be categorized into two broad categories: monoalphabetic and polyalphabetic

(xii) DES consists of _____ rounds to perform the substitution and transposition techniques

(xiii) _____ means that a sender must not be able to deny sending a message that he sent

(xiv) A packet filter firewall filters at the _____

(xv) In email security, _____ is a standard that provides encryption and digital signatures for email messages, using a combination of public key cryptography and certificates.

Group - B

2. (a) Use Fermat's Little Theorem to compute $7^{13} \pmod{11}$. [(CO2)(Apply/LOCQ)]
 (b) Explain the core security goals in information security. How do they help in protecting systems and data from unauthorized access? [(CO1)(Remember/LOCQ)]

6 + 6 = 12

3. (a) Solve the system of congruences using the Chinese Remainder Theorem:
 $x \equiv 4 \pmod{5}$, $x \equiv 3 \pmod{7}$. [(CO2)(Apply/LOCQ)]
 (b) Explain the difference between a 'Phishing' attack and a 'Man-in-the-Middle' (MitM) attack. Provide an example of each. [(CO1)(Understand/LOCQ)]

6 + 6 = 12

Group - C

4. (a) What is the difference between diffusion and confusion? Explain with suitable example. [(CO3)(Understand/LOCQ)]
 (b) Describe the key schedule process in DES. How is the 56-bit key used to generate

the 16 subkeys required for each round of the DES encryption process? Provide an example illustrating this process. [(CO4)(Evaluate/HOCQ)]

5 + 7 = 12

5. (a) Given the plaintext message “ATTACKATDAWN” and the key ‘SECRET’, perform the encryption process using the Vigenère cipher. Show the step-by-step calculation for each letter and provide the final ciphertext. [(CO3)(Apply/IOCQ)]

(b) Evaluate the Feistel encryption and decryption scheme with help of the Feistel structure diagram. [(CO3)(Evaluate/HOCQ)]

5 + 7 = 12

Group - D

6. (a) Perform encryption and decryption using the RSA algorithm, for the following: $p = 7$; $q = 11$, $e = 17$; $M = 8$. [(CO4)(Apply/IOCQ)]

(b) In an ElGamal scheme with common prime $q = 17$ and a primitive root $a = 6$.

- If B has private key $X_B = 5$, find the public key of B.
- If A chose the random integer $k=2$, what is the ciphertext of $M=30$? [(CO4)(Apply/IOCQ)]

6 + (3 + 3) = 12

7. (a) Explain the concept and working of a Digital Signature. Discuss how it ensures authenticity and integrity in a communication system. [(CO4)(Analyse/HOCQ)]

(b) How can Digital Signatures be combined with the Diffie-Hellman Key Exchange to enhance the security of a communication session? [(CO4)(Understand/LOCQ)]

8 + 4 = 12

Group - E

8. (a) Defend the decision to have a separate Change Cipher Spec Protocol in SSL/TLS rather than including it in the Handshake Protocol. [(CO5) (Analyse/IOCQ)]

(b) Explain the difference between statistical anomaly detection and rule-based intrusion detection. [(CO5) (Remember/LOCQ)]

6 + 6 = 12

9. (a) Analyze the role of key-management functions in ensuring the security and integrity of messages in S/MIME. [(CO5) (Analyse/IOCQ)]

(b) Interpret the parking lot attack that can be launched on wireless networks. What security measures can be taken to mitigate this attack? [(CO6) (Analyse/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	40.63	36.46	22.91

