

FINITE ELEMENT METHOD
(MECH 3231)

Time Allotted : 2½ hrs

Full Marks : 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

1. Answer any twelve: **12 × 1 = 12**

Choose the correct alternative for the following

- (i) In the domain residual method, what is the 'residual'?
 - (a) The exact solution.
 - (b) The difference between the approximate and exact solutions.
 - (c) The initial condition.
 - (d) The boundary condition.
- (ii) Rayleigh-Ritz method is based on
 - (a) Principle of conservation of external forces and reaction forces.
 - (b) Principle of conservation of external moments and reaction moments.
 - (c) Principle of Stationary Total Potential.
 - (d) All of the above principles.
- (iii) The elemental stiffness matrix of a 2-noded BAR element having cross-sectional area 'A', elemental length 'L' and modulus of elasticity 'E' is
 - (a) $\frac{L}{AE} \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$
 - (b) $\frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
 - (c) $\frac{AL}{E} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
 - (d) $\frac{AE}{L} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$
- (iv) For a 2-Node BEAM element which of the following statement is not true.
 - (a) Nodal DOF is 2
 - (b) Elemental DOF is 4
 - (c) It has four shape functions
 - (d) Stiffness matrix is 2×2 matrix
- (v) The elemental stiffness matrix of a BEAM element can be expressed in terms of [B] matrix, Young's modulus E and differential volume dv as
 - (a) $\int [B]^T [B] E dv$
 - (b) $\int [B] [B]^T E dv$
 - (c) $\int [B] E dv$
 - (d) $\int [B] dv$
- (vi) CST element possesses
 - (a) Constant field variable throughout the element.
 - (b) Derivative of the field variable is constant throughout the element.
 - (c) Variation of the field variable is quadratic throughout the element.
 - (d) Variation of the field variable is cubic throughout the element.

(vii) The coefficient in stress-strain relation for a linear, elastic, isotropic material under plane strain condition is given by-

(a) $\frac{E}{(1+\nu)} \begin{bmatrix} 1-\nu & 0 & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$

(c) $\frac{E}{(1-2\nu)} \begin{bmatrix} 1-\nu & 0 & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$

(b) $\frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$

(d) $\frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} \nu & 0 & 0 \\ \nu & \nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$

(viii) For two-point numerical integration by Gauss Quadrature formula, the locations of sampling point (x_i) are

(a) $\left(+\frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right)$ (b) $\left(+\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{5}} \right)$ (c) $\left(+\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right)$ (d) $\left(+\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right)$

(ix) Which one of the following software is not a FEA dedicated software

(a) AutoCAD (b) ANSYS (c) MSC Nastran-Patran (d) COMSOL

(x) The sequence of the numerical simulation in any FEA software is

(a) Pre-processing \rightarrow Solution \rightarrow Post-processing
 (b) Post-processing \rightarrow Solution \rightarrow Pre-processing
 (b) Pre-processing \rightarrow Post-processing \rightarrow Solution
 (d) Solution \rightarrow Pre-processing \rightarrow Post-processing

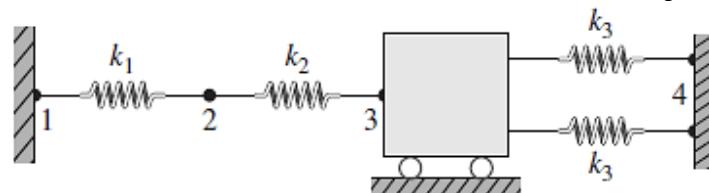
Fill in the blanks with the correct word

(xi) The Galerkin method is a type of _____ residual method.

(xii) For a 2-node BAR element of length 'L', the shape functions N_1 and N_2 in terms of domain variable 'x', are _____ and _____.

(xiii) If two spring element of stiffness 'K₁' and 'K₂' respectively are connected in series, then its global stiffness matrix of this spring combination would be _____.

(xiv) The coefficient in stress-strain relation for a linear, elastic, isotropic material having modulus of elasticity 'E' and Poisson's Ratio 'v' under plane stress condition is _____.

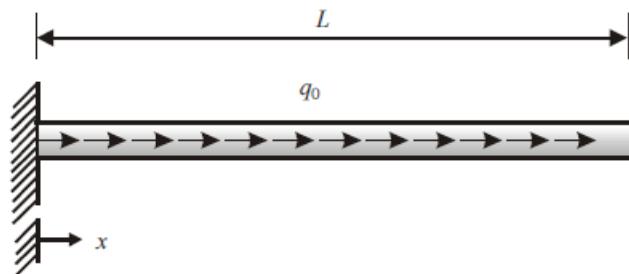

(xv) Governing equations are often expressed as _____ equations.

Group - B

2. (a) What is Raileigh-Ritz Method?

[(CO2) (Understand/LOCQ)]

(b) For the assembly of springs as shown Fig. 1 below, determine global stiffness matrix of the spring assembly using Rayleigh-Ritz Method. Also write down the final FEA formulation to find out deflections of each spring.


Fig. 1

[(CO2) (Analyse/LOCQ)]

2 + (7 + 3) = 12

3. (a) What do you understand by governing equation of any physical phenomenon?
 [(CO1) (Understand/LOCQ)]

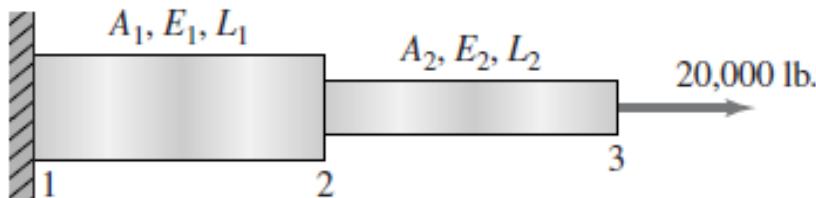
(b) Find the approximate solution of a uniform rod subjected to a uniform axial load has been shown in Fig. 2 below. The governing differential equation is given by:

Fig. 2

$$AE \frac{\partial^2 u}{\partial x^2} + q_0 = 0$$

with the boundary conditions,

$$u(0) = 0 \text{ and } \frac{\partial u}{\partial x} = 0 \text{ (at } x=L)$$

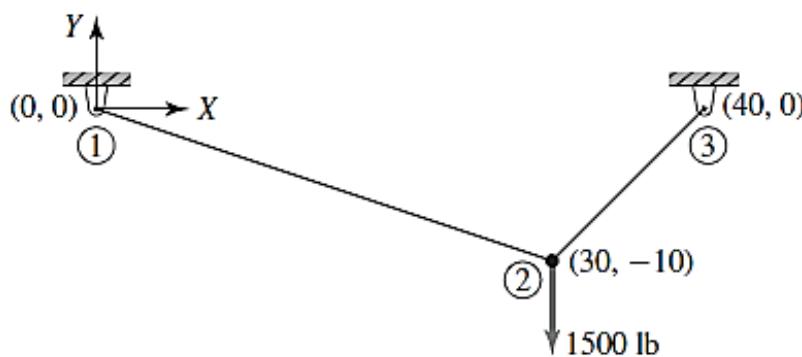

By assuming the approximate function $u(x) \approx \hat{u}(x) = c_1 x + c_2 x^2$

[(CO1) (Analyse/LOCQ)]

2 + 10 = 12

Group - C

4. Fig. 3 depicts an assembly of two bar elements made of two different materials. Determine the nodal displacements, element stresses and reaction forces at support.


Fig. 3

Given $A_1 = 4 \text{ in}^2$, $A_2 = 2.25 \text{ in}^2$, $E_1 = 15 \times 10^6 \text{ lb/in}^2$, $E_2 = 10 \times 10^6 \text{ lb/in}^2$ and $L_1 = L_2 = 20 \text{ in}$.

[(CO3) (Apply/LOCQ)]

(6 + 2 + 4) = 12

5. The plane truss shown in Fig. 4 below is subjected to a downward vertical load at joint 2. Determine the deflection of joint 2 in the global coordinate system, the axial stress in each element and Reactions at each support. For both elements $A = 0.5 \text{ in}^2$ and $E = 30 \times 10^6 \text{ psi}$.

Fig. 4

[(CO3) (Apply/HOCQ)]

(5 + 4 + 3) = 12

Group - D

6. (a) Discuss in detail about Plane Stress and Axisymmetric condition for an object made of linear, elastic, isotropic material with suitable examples.

[(CO4) (Understand/IOCQ)]

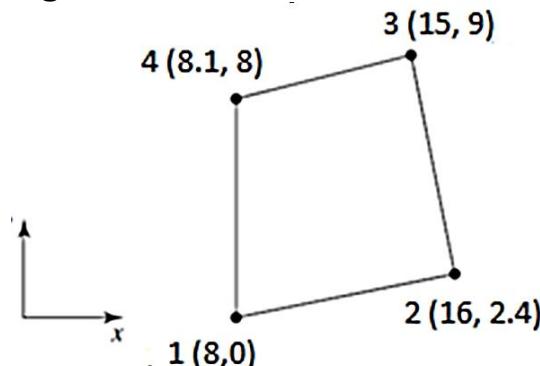
(b) Mention constitutive relations for 'Plain Stress' and 'Axisymmetric' conditions.

[(CO4) (Remember/LOCQ)]

(3 + 3) + (3 + 3) = 12

7. (a) Schematically represent a Triangular element showing its nodal degree freedom in user coordinate system.

[(CO4) (Remember/LOCQ)]


(b) Derive the expressions of shape functions of a Triangular element in user coordinate system.

[(CO4) (Understand/IOCQ)]

(2 + 2) + 8 = 12

Group - E

8. Fig. 5 shows a quadrilateral element in user coordinate system. Show that the mapping correctly describes the line connecting nodes 2 and 3 and determine the (x, y) coordinates corresponding to the normalized coordinate $(\xi, \eta) = (0.6, 0.5)$.

Fig. 5

[(CO5) (Analyse/HOCQ)]

(4 + 8) = 12

9. Evaluate the given integral analytically and numerically using Gauss-Legendre formula.

$$\int_1^5 (x^3 + 6x^2 + 10) dx$$

Also compare the analytical and numerical results by calculating percentage error.

[(CO5) (Apply/IOCQ)]

(4 + 7 + 1) = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	20.83	54.16	25.01