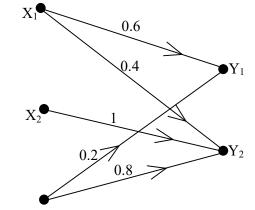
B.TECH/IT/4TH SEM /INFO 2203/2016

(vii) If there are 'M' number of equally likely messages, the entropy of the source is _____

(a) $\log 2(M + 1)$	(b) log2M + 1
(c) $\log 2(M/2)$	(d) log2M.

Group - B

2. (a) The input source to a noisy communication channel is a random variable X over the four symbols a, b, c, d. The output from this channel is a random variable Y over these same four symbols. The joint distribution of these two random variables is as follows:


	x = a	x = b	x = c	x = d
y = a	1/8	1/16	1/16	1/4
y = b	1/16	1/8	1/16	0
y = c	1/32	1/32	1/16	0
y = d	1/32	1/32	1/16	0

- (i) Write down the marginal distribution for X and compute the marginal entropy H(X) in bits.
- (ii) Write down the marginal distribution for Y and compute the marginal entropy H(Y) in bits.
- (iii) What is the joint entropy H(X,Y) of the two random variables in bits?
- (iv) What is the conditional entropy H(Y|X) and H(X|Y)in bits?
- (v) What is the mutual information I(X; Y) between the two random variables in bits?
- (b) Show that I(X;Y) = H(X) + H(Y) H(X,Y).

(1+1+2+3+2) + 3 = 12

B.TECH/IT/4TH SEM /INFO 2203/2016

3. A discrete memory less source with three symbols, with probabilities $P(X_1) = P(X_3)$ and $P(X_2) = \alpha$, feeds into discrete memory less channel shown in the figure below:

- i) Determine maximum value of H(X).
- ii) Determine the transition matrix for discrete memoryless channel.
- iii) Determine the maximum value of entropy H(Y) at the channel output.

5 + 2 + 5 = 12

Group - C

- 4. (a) For a linear block code, prove with example that "All error patterns that differ by a codeword have the same syndrome".
 - (b) Consider a (6,3) linear block code whose generator matrix is given by
 - $\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$
 - (i) Find the parity check matrix.
 - (ii) Find the minimum distance of the code.
 - (iii) Draw the encoder and syndrome computation circuit.

4 + (2 + 2 + 4) = 12

- 5. (a) Determine the encoded message for the 8-bit data codes, 0101111, using the following CRC generating polynomial g(x) = x4 + x3 + 1
 - (b) For a (7, 4) cyclic code with generator polynomial $x^3 + x^2 + 1$, Determine the generator matrix (G).

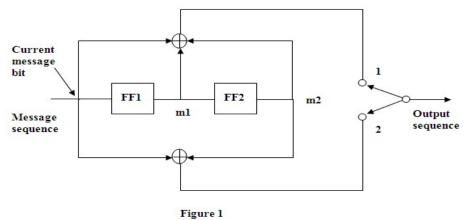
6 + 6 = 12

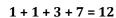
INFO 2203

B.TECH/IT/4TH SEM /INFO 2203/2016

Group - D

- 6. (a) Prove that, a BCH code obtained by considering the first d powers of α has distance d +1.
 - (b) Explain the steps for decoding BCH codes.


4 + 8 = 12


7. Find the generator polynomial g(x) for a single error correcting binary BCH code of block-length 31. Use the primitive polynomial p(x) = x5 + x2 + 1 to construct GF(32). What is the minimum distance of this code?

(5 + 5 + 2) = 12

Group - E

- 8. For the convolution encoder of figure 1, determine the following:
 - (i) Dimension of the code
 - (ii) Code rate
 - (iii) Generating sequences (impulse responses)
 - (iv) Output sequence for message sequence of 10011

9. A rate 1/3 convolutional coder with constraint length of '3' uses the generating vectors

 $g_1 = (1 \ 0 \ 0), g_2 = (1 \ 0 \ 1) and g_3 = (1 \ 1 \ 1)$

- i) Sketch encoder configuration and prepare the logic table.
- ii) Draw the state diagram for the coder.
- iii) Determine the $d_{\rm free}$ distance of the coder.

(2+2) + 3 + 5 = 12

B.TECH/IT/4TH SEM /INFO 2203/2016 2016

INFORMATION THEORY AND CODING (INFO 2203)

Time Allotted : 3 hrs

Full Marks :

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each grou

Candidates are required to give answer in their own words as far practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: 10 x ⁻ (i) The capacity of a Binary Symmetric Channel (BSC) with cross probability 0.5 is (a) 1 (b) 0 (c) 2 (d) 1.5. A source produces 4 symbols with probability 1/2, 1/4, 1/8, 1/2(ii) this source, a practical coding scheme has an average code length of 2 bits/symbols. The efficiency of the code is (a) 1 (b) 7/8 (c) 1/2 $(d) 1_{1}$ Entropy of a binary source with probabilities $P = \{7/16, 9/16\}$ i (iii) (a) 0.389 (b) 0.689 (c) 0.989 (d) 0.58 Hamming weight of a code vector is the number of _____ compc (iv) of Codeword. (a) Zero (b) Non-zero (c) Zero and non-zero (d) None.
 - (v)The mutual information (I) is always
(a) 0(b) > 0(c) ≥ 0 (d) $\le 0.$ (vi)A (n, k) block code consists of
k number of information bits.
(a) n+knumber of check bits add
(c) n/k(d) r

INFO 2203

1