B.TECH/IT/4TH SEM/MATH 2203/2016

The linear equation 51x+6y=8 has no integral solution because (vii) gcd(51,6)=3 and (a) 3 does not divide 8 (b) 2 dividos 51

a) 5 uoes not uiviue o	
c) 3 divides 6	(d) 51 does not divide 8.

The index of a subgroup is 5 and its order is 3. The order of the (viii) group is (a) 8

(b) 10 (c) 15 (d) none of these.

- A divisor of zero in Z_{10} , the ring of integers modulo 10, is (ix) (b) [3] (d) [9]. (a) [5] (c) [7]
- The only generator(s) of the cyclic group (Z, +) is / are (x) (d) none of these. (a) 1 (b) 0,1 (c) 1, -1

Group - B

- (i) Let G be a graph. Prove that the constant term in its chromatic 2. (a) polvnomial is 0.
 - (ii) Let G be a graph which has more than one edge. Prove that the sum of the coefficients in its chromatic polynomial is 0.
 - State Euler's Formula for simple connected planar graphs. Let G be a (b) simple connected planar graph having n vertices, e edges and fregions (faces). Then prove that $e \geq \frac{3}{2}f$.

(3+3) + 6 = 12

3. (a) State the Decomposition Theorem. Use it to find the chromatic polynomial of the following graph. Show your work in detail.

- (i) State Hall's Marriage Theorem (b)
 - (ii) Write down all the perfect matchings in K₄, the complete graph having 4 vertices (Name the vertices as A, B, C, D).

7+(2+3)=12

B.TECH/IT/4TH SEM/MATH 2203/2016

Group - C

- Consider the operation $a^*b=a^b$, $\forall a,b \in N$. Examine whether the 4. (a) given operation is a binary operation on $\in N$. Is the given operation associative?
 - Consider the binary operation $a^*b=a$, $\forall a,b \in N$. Find the identity (b) element in N under *, if it exists.
 - Prove that the identity element in a group is unique. (c)
 - Show that the set of all odd integers does not form a group under (d)usual addition.

4 + 3 + 3 + 2 = 12

- (i) Describe the set of all permutations on the set **{1,2,3}**. Which of 5. (a) them are even?
 - (ii) If **G** is a group such that $a^2 = e$ for all $a \in G$. Show that **G** is abelian. Is it true if $a^3 = e$, for all $a \in G$?
 - Let *G* be a group with a finite number of elements. Show that for any (b) $a \in b$, there exists an $n \in \mathbb{Z}^+$ such that $a^n = e$.

(3+5) + 4 = 12

Group - D

- Prove that the necessary and sufficient condition for a nonempty 6. (a) subset H of a group G to be a subgroup is that for all $a, b \in G$, $ab^{-1} \in G$.
 - (b) State and prove Lagrange's Theorem regarding the order of a subgroup of a finite group.

6 + 6 = 12

- 7. (a) (i) Prove that $(\mathbf{Q}, +)$ is a non-cyclic group. (ii) Prove that every non-trivial subgroup of an infinite cyclic group is infinite.
 - Prove that the centre of a group G, Z (G) = { $x \in G : xg = gx \text{ f or all } g \in G$ } (b) is a subgroup of *G*.

(3+5) + 4 = 12

Group - E

(i) Is $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ an integral domain? Give reasons for your 8. (a) answer.

(ii) Is $Z_5 = \{0, 1, 2, 3, 4\}$ a field? Give reasons for your answer.

MATH 2203

B.TECH/IT/4TH SEM/MATH 2203/2016

(b) Prove that the intersections of two subrings is a subring.

(3+3) + 6 = 12

- 9. (a) Let K be a ring. The centre of K is the set $\{x \in K \mid ax = xa \text{ for all } a \in K\}$. Prove that the centre of K is a subring of it.
 - (b) (i) Let K be a ring. Prove that $a^2 b^2 = (a + b)(a b)$ for all a, b in K if and only if K is commutative.
 - (ii) Suppose that there is a positive even integer n such that $a^n = a$ for all elements a of some ring K. Prove that -a = a for all a in K.

5+(3+4)=12

B.TECH/IT/4TH SEM /MATH 2203/2016 2016

GRAPH THEORY AND ALGEBRAIC STRUCTURES (MATH 2203)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternatives for the following:	$10 \times 1 = 10$
----	--	--------------------

(i) Which of the following operations is not commutative?
(a) Matrix addition
(b) arithmetical multiplication
(c) matrix multiplications
(d) arithmetical addition.

(ii) If *G* has three vertices and no edges then the chromatic number of *G* is

(a) 2 (b) 0 (c) 3 (d) none of these.

- (iii) Let G be a group and $a \in G$. If O(a)=17 then $O(a^8)$ is (a) 17 (b) 16 (c) 8 (d) 5.
- (iv) Which of the following is not a subring of the ring of all integers under + and ×?

(a) The set of all even integers

(b) The set of all integers which are multiples of 3

(c) The set of all odd integers

(d) The set of integers which are multiples of 4.

- (v)The symmetric group S_3 is
(a) cyclic but not abelian
(c) non cyclic and non abelian(b) cyclic and abelian
(d) none of these.
- (vi)The number of subrings of Z, the ring of all integers, is
(a) 2(b) 3(c) 4(d) infinite.

1