

**FUNDAMENTALS OF CIRCUIT THEORY
(ELEC 3221)**

Time Allotted : 2½ hrs

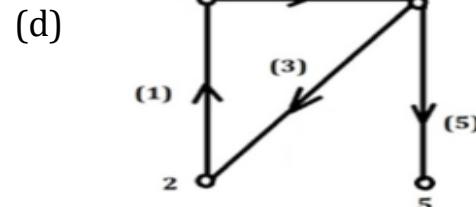
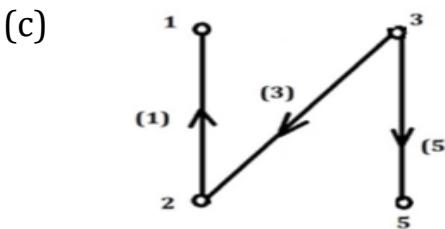
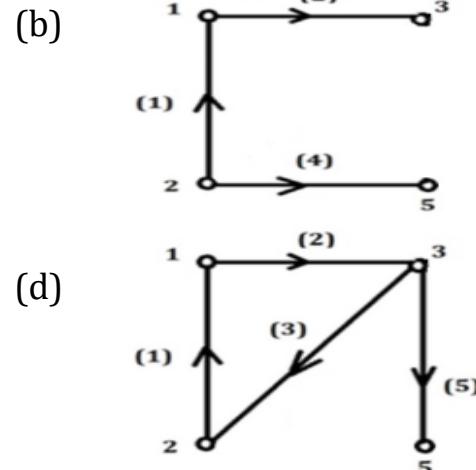
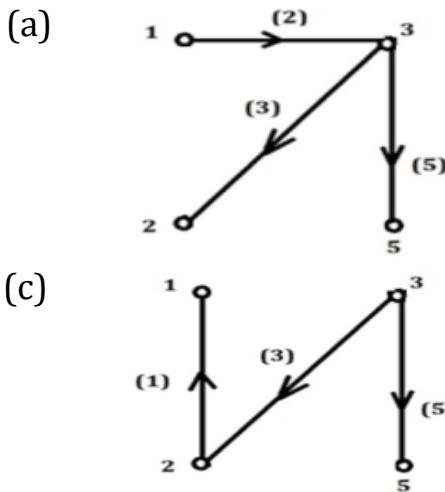
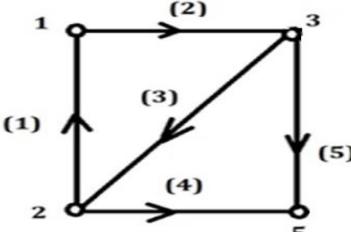
Full Marks : 60

Figures out of the right margin indicate full marks.

*Candidates are required to answer Group A and
any 4 (four) from Group B to E, taking one from each group.*

Candidates are required to give answer in their own words as far as practicable.

Group - A






1. Answer any twelve:

12 × 1 = 12

Choose the correct alternative for the following

- (i) Superposition theorem can be applied only to circuits having
 - (a) resistive elements
 - (b) passive elements
 - (c) non-linear elements
 - (d) linear bilateral elements
- (ii) For maximum transfer of power in ac circuit, the load impedance will be equal to
 - (a) source impedance
 - (b) complex conjugate of the source impedance
 - (c) source resistance
 - (d) source reactance
- (iii) The superposition theorem requires as many times to be solved as there are
 - (a) meshes
 - (b) nodes
 - (c) sources
 - (d) independent sources
- (iv) The Laplace transform of a function is $F(s) = \frac{2s}{s^2+2s+5}$. Its initial value is
 - (a) 4
 - (b) -2
 - (c) 2
 - (d) 0
- (v) The inverse Laplace transform of $F(s) = \frac{1}{(s+1)^2+1}$ is
 - (a) $e^{-t} \sin \sin t$
 - (b) $e^{-t} \cos \cos t$
 - (c) $\sin t$
 - (d) e^{-t}
- (vi) Z_{21} in terms of Y parameter is
 - (a) $\frac{-Y_{22}}{\Delta Y}$
 - (b) $\frac{-Y_{12}}{\Delta Y}$
 - (c) $\frac{-Y_{11}}{\Delta Y}$
 - (d) $\frac{-Y_{21}}{\Delta Y}$
- (vii) A cut-set of a graph represents
 - (a) A set of branches whose removal disconnects the graph
 - (b) A set of branches forming a loop
 - (c) A minimal path in a circuit
 - (d) The total number of edges in a circuit
- (viii) Which among the following represents the precise condition of reciprocity of ABCD parameters?
 - (a) $AB-BD=1$
 - (b) $AC-BD=1$
 - (c) $BC-AD=1$
 - (d) $AD-BC=1$
- (ix) If a two-port network is reciprocal, which condition must be satisfied for its Z-parameters?
 - (a) $Z_{11} = Z_{22}$
 - (b) $Z_{12} = Z_{21}$
 - (c) $Z_{11} + Z_{22} = 0$
 - (d) $Z_{11} - Z_{22} = 0$

(x) Which of the given options is not a tree of the following graph?

Fill in the blanks with the correct word

- (xi) The Thevenin's equivalent circuit consists of a voltage source in series with a _____.
- (xii) In a dc network the efficiency under maximum power transfer condition is _____.
- (xiii) In an RL series circuit having $R=2\Omega$ and $L=2\text{mH}$, a dc voltage of 10V is applied at $t=0$. The value of steady-state current is _____.
- (xiv) A graph consists of _____ and _____ representing circuit elements and connections.
- (xv) In Z-parameter representation the output driving point impedance is _____.

Group - B

2. (a) Determine mesh currents for the circuit of Fig. 2(a).

[(CO1)(Apply/IOCQ)]

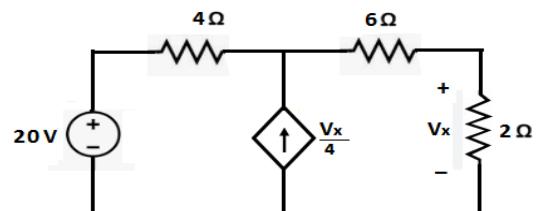


Fig. 2(a)

(b) Obtain Thevenin's equivalent circuit across X-Y terminals for the circuit of Fig. 2(b).

[(CO2)(Apply/IOCQ)]

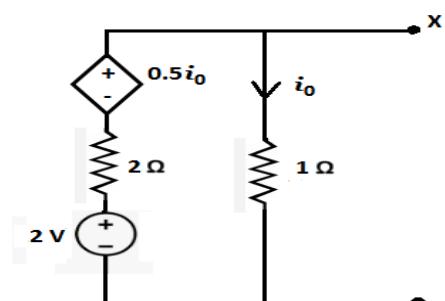


Fig. 2(b)

6 + 6 = 12

3. (a) Find the value of R_L in the circuit of Fig. 3(a) for which maximum power transfer can take place from source to load.

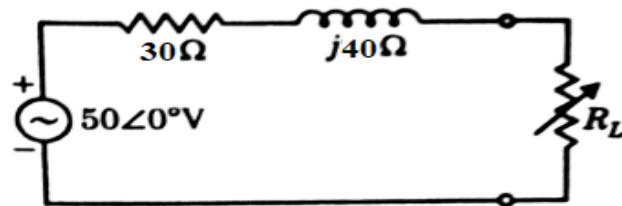


Fig. 3(a)

[(CO2)(Apply/IOCQ)]

(b) Use superposition theorem to find i_0 for the circuit of Fig. 3(b).

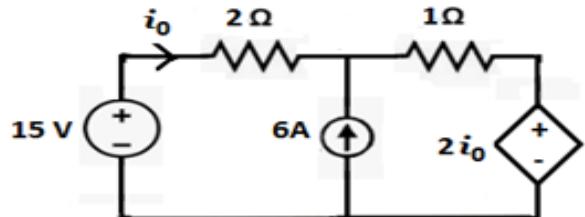


Fig. 3(b)

[(CO2)(Analyse/HOCQ)]

(c) What is dependent source? What are the different types of dependent source?
[(CO1)(Remember/LOCQ)]
 $2 + 6 + (1 + 3) = 12$

Group - C

4. (a) Obtain Laplace transform of the given periodic waveform Fig. 4 (a).

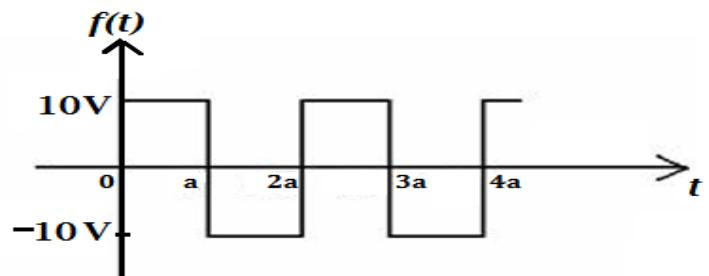


Fig. 4(a)

[(CO3)(Understand/LOCQ)]

(b) In the series RLC circuit shown in Fig. 4(b), there is no initial charge on the capacitor. If the switch S is closed at $t=0$, determine the resulting current for $t > 0$.

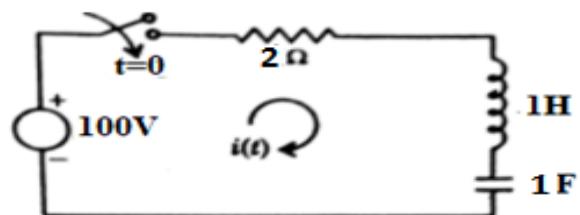


Fig. 4(b)

[(CO4) (Apply/IOCQ)]

$$5 + 7 = 12$$

5. (a) Determine Laplace transform for the staircase waveform as shown in Fig. 5(a).

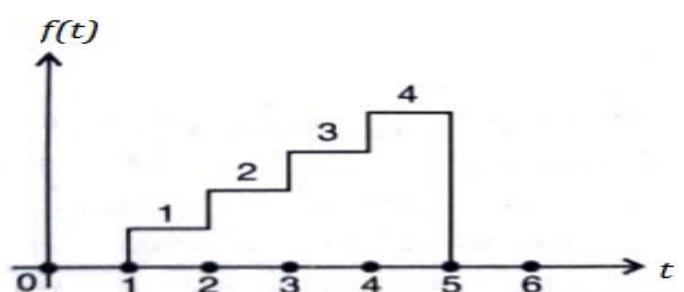


Fig. 5(a)

[(CO3)(Apply/IOCQ)]

(b) The circuit in Fig. 5(b), is initially at steady-state condition. The switch "s" is moved from position 1 to position 2 at $t = 0$. Determine the expression of the current flowing through the circuit after switching.

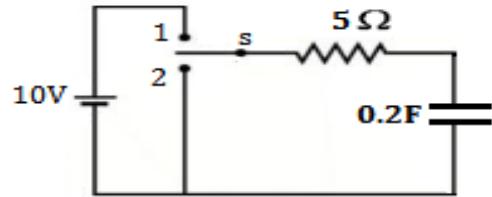


Fig. 5(b)

[(C04)(Apply/IOCQ)]

5 + 7 = 12

Group - D

6. (a) Develop Complete Incidence matrix of the directed graph shown in Fig. 6(a).
[(C05) (Create/HOCQ)]

(b) Assume the sub-graph shown in Fig. 6(b) as a tree and develop fundamental Cut-set matrix and Tie-set matrix.

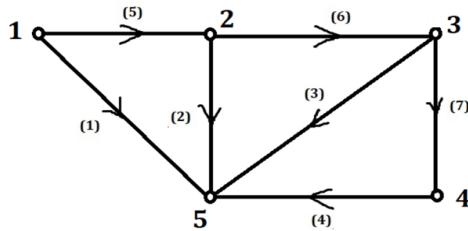


Fig. 6(a)

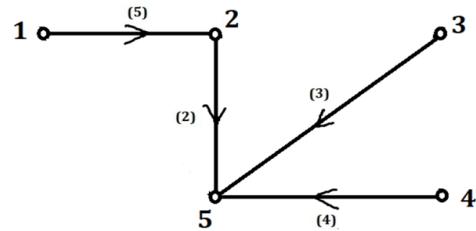


Fig. 6(b)

[(C05) (Apply/IOCQ)]

4 + (4 + 4) = 12

7. (a) Define node, degree of a node, tree, twig and link of a graph in circuit theory.
[(C05)(Remember/LOCQ)]

(b) Draw the directed graph for the following incidence matrix.
 $A_a = [-1 \ 0 \ -1 \ 1 \ 0 \ 0 \ 1 \ 0 \ -1 \ 0 \ -1 \ 0 \ -1 \ 0 \ 1 \ 1 \ 0 \ 0 \ -1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ -1]$
[(C05)(Apply/IOCQ)]

6 + 6 = 12

Group - E

8. (a) Define Z-parameters and transmission (ABCD) parameters. Express Z- Parameters in terms of hybrid parameters.
[(C06)(Remember/LOCQ)]

(b) Analyse the circuit shown in Fig. 8(b) and find its Z- parameters and Y- parameters.

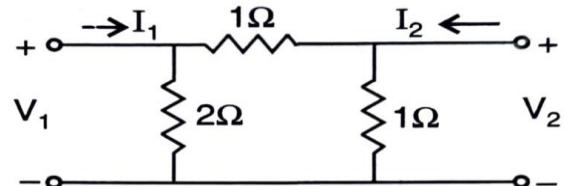


Fig. 8(b)

[(C06)(Apply/IOCQ)]

(2 + 2 + 2) + 6 = 12

9. (a) For hybrid parameters, develop the condition of Symmetry and Reciprocity.
[(C06)(Analyse/HOCQ)]

(b) Find Y-parameters in terms of Z- parameters.
[(C06)(Remember/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	28.1	55.2	16.7