

SIGNALS & SYSTEMS
(ELE2203)

Time Allotted : 2½ hrs

Full Marks : 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

1. Answer any twelve:

12 × 1 = 12

Choose the correct alternative for the following

- (i) If a signal $f(t)$ has energy E, the energy of the signal $f(2t)$ is equal to
 - (a) E
 - (b) $E/2$
 - (c) $2E$
 - (d) $4E$
- (ii) If a periodic signal has an odd symmetry, the Fourier series contains
 - (a) only sine terms
 - (b) only cosine terms
 - (c) constant and cosine terms
 - (d) both sine and cosine terms.
- (iii) Fourier transform of a gate signal is
 - (a) sine wave
 - (b) sinc function
 - (c) unit step signal
 - (d) none of these
- (iv) The sampling frequency of the signal $x(t) = 4\sin(150\pi t) + 2\cos(50\pi t)$ should be
 - (a) greater or equal to 75 Hz
 - (b) greater or equal to 150 Hz
 - (c) lesser or equal to 150 Hz
 - (d) greater or equal to 25 Hz
- (v) The R.O.C of $z - transform$ for the discrete signal $x(n) = 2(2^n)u(n)$ is
 - (a) R.O.C : Outside the unit circle of $z -$ plane
 - (b) R.O.C : $|z| > 2$
 - (c) R.O.C : Complete $z -$ complex plane
 - (d) R.O.C : $|z| < 2$
- (vi) The inverse $z - transform$ for the discrete signal $X(z) = z/(z - \frac{1}{3})$ for R.O.C : $|z| > \frac{1}{3}$ is
 - (a) $x(n) = (\frac{1}{3})^n u(n)$
 - (b) $x(n) = (3)^n u(n)$
 - (c) $x(n) = (\frac{1}{3})^n u(-n - 1)$
 - (d) $x(n) = (3)^n u(-n - 1)$
- (vii) In force-voltage analogy, mass is analogous to
 - (a) resistance
 - (b) inductance
 - (c) capacitance
 - (d) conductance
- (viii) The unit step response of the system $G(s) = \frac{1}{0.2s+1}$ reaches 98% of its final value after
 - (a) 0.6 sec
 - (b) 0.8 sec
 - (c) 2 sec
 - (d) 1 sec

(ix) A second order system has $= \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$, the system is
 (a) underdamped (b) overdamped
 (c) critically damped (d) undamped.

(x) The transfer function can be found from state space representation using the relation:
 (a) $C(sI - A)^{-1}B + D$ (b) $B(sI - A)^{-1}C + D$
 (c) $D(sI - A)^{-1}B + C$ (d) $D(sI - A)^{-1}C + B$

Fill in the blanks with the correct word

(xi) The value of the integral $\int_{-\infty}^{\infty} \delta(at) dt$ is ____.

(xii) The unit step signal is a ____ signal.

(xiii) The z-transform of unit ramp sequence is ____.

(xiv) For the 2nd order system $G(s) = \frac{49}{s^2 + 10s + 49}$ the natural frequency of oscillation is ____.

(xv) A system is described by the differential equation $\ddot{x} + 5\dot{x} + 4x = f(t)$. The 'C' matrix of the system is ____.

Group - B

2. (a) Examine whether signal $x(t) = e^{-4t}$ is an energy or a power signal. [(CO1) (Analyse/IOCQ)]

(b) Sketch the signal $x(t) = r(t) - 2r(t - 3) + r(t - 6)$. [(CO1) (Understand/LOCQ)]

(c) Sketch the even and odd component of a unit step signal. [(CO1) (Understand/LOCQ)]

(d) Determine the output of a system whose impulse response $h(t) = u(t + 3)$ for an input $x(t) = e^{-2t}u(t)$ using graphical convolution method. [(CO2) (Evaluate /HOCQ)]

3 + 2 + 2 + 5 = 12

3. (a) Determine the Trigonometric Fourier series for the signal $x(t)$ shown in Fig. 3(a). Hence find out the exponential Fourier series coefficients.

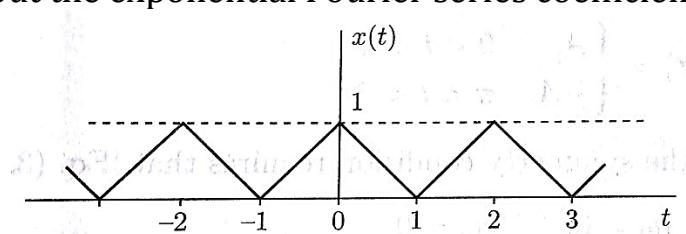
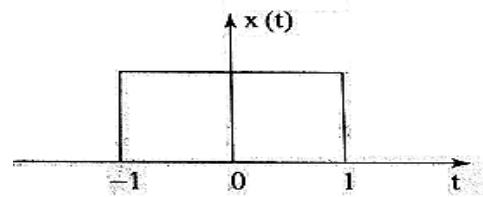



Fig.-3(a)

(CO1) (Analyze/IOCQ)]

(b) Find the Fourier transform of the signal $x(t)$ shown in Fig. 3(b). Also sketch the amplitude and phase spectrum of the signal.

Fig. 3(b)

[(CO1) (Analyze/IOCQ)]

$$6 + 6 = 12$$

Group - C

4. (a) What do you mean by aliasing phenomenon? How we can prevent aliasing?
[(CO3) (Remember/LOCQ)]

(b) Find the z-transform and ROC of the following signals.

(i) $x(n) = [(\frac{2}{3})^n]u(n) + [(\frac{1}{2})^n]u(-n-1)$

(ii) $g(n) = A \sin(w_0 n) u(n)$

(iii) $x(n) = n(\frac{1}{4})^n u(n)$
[(CO3) (Analyze/IOCQ)]

3 + (3 + 3 + 3) = 12

5. (a) Find the inverse z-transform using partial fraction method of the following functions.

(i) $X(z) = \frac{z^2+z}{(z-1)(z-3)}$, ROC $|z| > 3$

(ii) $X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$, ROC $|z| > 2$
[(CO3) (Analyze/IOCQ)]

(b) Determine the impulse response of the system whose input ($x(n)$) and output ($y(n)$) relationship is given by the difference equation
 $y(n) = 5y(n-1) - 6y(n-2) + x(n)$.
[(CO3) (Evaluate /HOCQ)]

(4 + 4) + 4 = 12

Group - D

6. (a) Define Linear Time invariant system.
[(CO4) (Understand/LOCQ)]

(b) Develop the electrical analogous circuit of the mechanical system shown in Fig. 6(b) using force-voltage and force-current analogy.

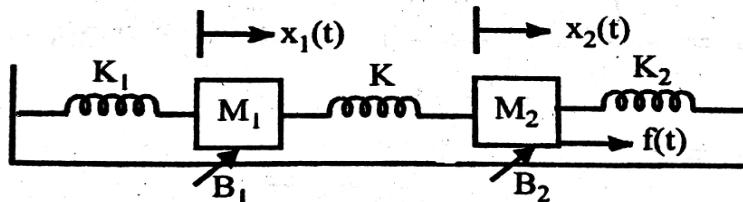


Fig. 6(b)

[(CO4) (Evaluate /HOCQ)]

2 + (5 + 5) = 12

7. (a) State the advantages and disadvantages of the transfer function approach.
[(CO5) (Understand/LOCQ)]

(b) A system is described by a differential equation, Where $c(t)$ is the output and $r(t)$ is the input to the system.

$$\frac{d^2c}{dt^2} + 7 \frac{dc}{dt} + 49 c(t) = 49 r(t)$$

Determine the

- (i) transfer function of the system
- (ii) natural frequency of oscillation and damping ratio of the system
- (iii) unit step response of the system
- (iv) peak time, over shoot and settling time of the system
- (v) sketch of the unit step response of the system.

[(CO5) (Analyze/IOCQ)]

2 + 10 = 12

Group - E

8. (a) Obtain the state space representation of the mechanical system shown in Fig. 8(a).

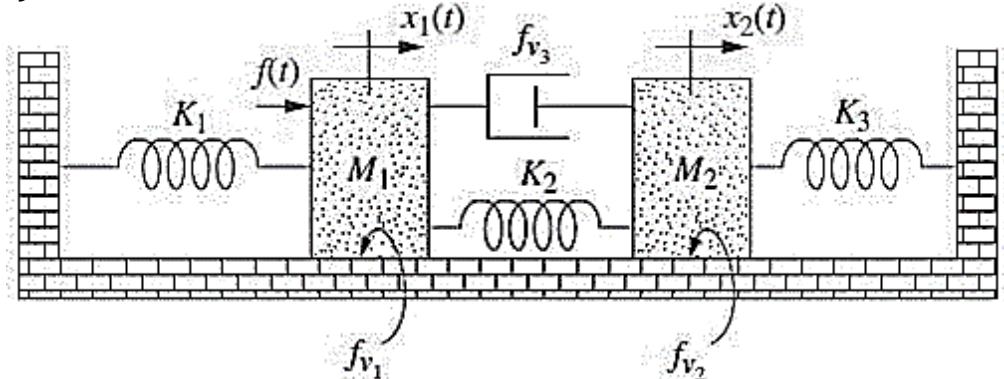


Fig. 8(a)

[(CO6) (Analyze/IOCQ)]

(b) Develop the state variable model of the system whose transfer function is given by

$$G(s) = \frac{10s + 11}{s^3 + 8s^2 + 9s + 10}$$

[(CO6) (Analyze/IOCQ)]

8 + 4 = 12

9. The state variable model of a system is given by,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = [1 \ 1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Evaluate the

- (i) transfer function of the system.
- (ii) state transition matrix
- (iii) zero input response if $x_1(0) = 0$ and $x_2(0) = 1$
- (iv) state response due to unit impulse input.
- (v) time response $y(t)$.

[(CO6) (Evaluate /HOCQ)]

(3 + 3 + 2 + 3 + 1) = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	14.6	53.1	32.3