OPERATIONS RESEARCH (MTH2203)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

Answer any twelve: 1.

 $12 \times 1 = 12$

Choose the correct alternative for the following

- (i) If the primal has a feasible solution and the dual problem does not have feasible solution, then
 - (a) dual objective function is unbounded
 - (b) finite optimal for both exists
 - (c) primal objective function is unbounded
 - (d) finite optimal for both do not exist.
- For a maximization model in an LPP, the coefficient of an artificial variable is (ii)
 - (a) 1
- (b) 0
- (c) M
- (d) -M
- The range of λ for which the following payoff matrix is strictly determinable is (iii) PLAYER B

λ	6	2
-1	λ	- 7
-2	4	λ

PLAYER A

(a) $\lambda \geq -1$

(b) $\lambda \le 2$ (c) $-1 \le \lambda \le 2$

- (d) for any value of λ .
- One disadvantage of using North-west corner rule to find IBFS is (iv)
 - (a) it is complicated to use
 - (b) it does not take into account the cost of transportation
 - (c) it leads to degenerate initial solution
 - (d) the solution is always infeasible.
- Which of the following statements is TRUE? (v)
 - (a) In a two person zero sum game gains of one player are equal to the losses of other player.
 - (b) Every matrix game has a saddle point.
 - (c) Use the concept of dominance in reducing the size of a matrix game may lead to the loss of the saddle point.
 - (d) If a game has a saddle point, then the players play with their mixed

(vi)	Which of the following Hessian matrices is positive definite?			
	(a) $\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$			
	(c) $\begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$ (d) $\begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$.			
(vii)	If a function is concave on a convex domain then any local maximum is (a) global maximum (b) global minimum (c) local maximum (d) neither global maximum nor global minimum			
(viii)	Let $Q(x,y,z)$ be a quadratic form such that $Q(x,y,z) \ge 0$ for $(x,y,z) \ne 0$ and $Q(-1,-2,3) = 0$, then (a) $Q(x,y,z)$ could be indefinite (b) $Q(x,y,z)$ could be positive definite (c) $Q(x,y,z)$ could be negative semi definite (d) $Q(x,y,z)$ could be positive semi definite.			
(ix)	The reduction ratio in Dichotomous Search algorithm, if we go through r iterations is			
	(a) $2^{r/2}$ (b) $2^{r/3}$ (c) 2^{r^2} (d) 2^r			
(x)	Out of the following search algorithms, which one has the slowest rate of convergence: (a) Interval halving method (b) Dichotomous search (c) Fibonacci search (d) Golden section search			
	Fill in the blanks with the correct word			
(xi)	A basic solution that satisfies the non-negativity condition is known as solution.			
(xii)	While solving an L.P.P using graphical method, the area bounded by the constraints in the positive quadrant is called the			
(xiii)	The function $f(x) = 2x^3 - 3x^2$ is convex, for all (write the range of x)			
(xiv)	The nature of the quadratic form $Q(x, y, z) = x^2 + y^2 + z^2 + 3yz$ is			
(xv)	In Fibonacci Search algorithm, if 6 iterations are performed, the reduction ratio is given by			
	Group - B			
(a)	Find the graphical solution of the given L.P.P: Maximize $z=2x_1+x_2$ subject to the constraints $x_1+2x_2\leq 10$ $x_1+x_2\leq 6$ $x_1-x_2\leq 2$ $x_1-2x_2\leq 1$			
(b)	$x_1, x_2 \ge 0$. [(MTH2203.1, MTH2203.2)(Understand/LOCQ)] Solve the following L.P.P by simplex algorithm: Maximize $z = 2x_1 + 3x_2$			
	ινιαλιιιιίΔC Δ — Δλ1 Τ Ολ2			

2.

subject to the constraints

$$x_1 + x_2 \le 1$$

$$3x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0.$$

[(MTH2203.1, MTH2203.2)(Apply/IOCQ)]

5 + 7 = 12

3. (a) Solve the following L.P.P by Big-M method:

Maximize
$$z = 2x_1 + 4x_2$$

subject to the constraints $x_1 + 2x_2 \le 2$
 $2x_1 + 6x_2 \ge 12$
 $x_1, x_2 \ge 0$

[(MTH2203.1, MTH2203.2)(Apply/IOCQ)]

(b) Find the dual of the given LPP: Maximize $z = 10x_1 + 20x_2$

subject to the constraints

$$x_1 + x_2 = 4$$

$$2x_1 - 3x_2 \le 7$$

$$x_1, x_2 \ge 0.$$

[(MTH2203.1, MTH2203.2)(Remember/LOCQ)]

7 + 5 = 12

Group - C

4. (a) Solve the given transportation problem using VAM and hence find its optimal solution.

	I	II	III	Supply
A	5	1	7	10
В	6	4	6	80
С	3	2	5	15
D	5	3	2	40
Demand	75	20	50	

[(MTH2203.1, MTH2203.2, MTH2203.3, MTH2203.4) (Evaluate/HOCQ)]

(b) Solve the assignment problem where the cost of assigning jobs J_1 to J_4 to workers W_1 to W_4 is given below:

	J_1	J_2	J_3	J_4
W_1	10	15	24	30
W_2	16	20	28	10
W_3	12	18	30	16
W_4	9	24	32	18

[(MTH2203.1, MTH2203.2, MTH2203.3, MTH2203.4) (Evaluate/HOCQ)]

7 + 5 = 12

5. (a) Use graphical method in solving the following game and find the value of the game. PLAYER B

PLAYER A

2	2	3	-2
4	3	2	6

[(MTH2203.1, MTH2203.2 MTH2203.3, MTH2203.4) (Apply/IOCQ)]

(b) Players *A* and *B* play a game in which each three coins, a 2 Rs., 5 Rs. and a 10 Rs. Each selects a coin without the knowledge of the other's choice. If the sum of the coins is an odd amount, then *A* wins *B*'s coin. But, if the sum is even, then *B* win's *A*'s coin. Find the best strategy for each player and the value of the game by dominance principal.

[(MTH2203.1, MTH2203.2 MTH2203.3, MTH2203.4)(Analyze/IOCQ)]

6 + 6 = 12

Group - D

6. Use the method of Lagrangian multipliers to solve the following non-linear programming problem. Does the solution maximize or minimize the objective function? Optimize $Z = 2x_1^2 - 24x_1 + 2x_2^2 - 8x_2 + 2x_3^2 - 12x_3 + 200$ Subject to the constraint

$$x_1 + x_2 + x_3 = 11$$

 $x_1, x_2, x_3 \ge 0$.

[(MTH2203.6) (Evaluate/HOCQ)]

12

7. (a) Use Kuhn-Tucker conditions to solve the following non-linear programming problem:

Maximize $z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$ subject to the constraints

$$x_1 + x_2 \le 2$$

$$2x_1 + 3x_2 \le 12$$

$$x_1, x_2 \ge 0$$

[(MTH2203.6) (Evaluate/HOCQ)]

(b) Determine the maximum or minimum (if any) of the following function:

$$f(x, y, z) = 3x^2 + 2y^2 + z^2 - 2xy - 2xz + 2yz - 6x - 4y - 2z$$

[(MTH2203.6) (Understand/LOCQ)]

8 + 4 = 12

Group - E

8. Find the minimum of f(x) = x(x - 1.5) in the interval [0.0, 1.0] using Interval halving method taking the tolerance to be less than 0.15 [(MTH2203.1, MTH2203.5) (Apply/10CQ)]

12

9. Use Dichotomous Search method to minimize $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ over [0, 2]. The tolerance limit being 0.3. Consider $\varepsilon = 0.001$. [(MATH2203.1, MATH2203.5)(Apply/IOCQ)]

12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	14.58	52.09	33.33