ALGEBRAIC STRUCTURES (MTH2201)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

			Grou	p – A						
1.	Answer any twelve:				$12 \times 1 = 12$					
	Choose the correct alternative for the following									
	(i)	The relation $R = \{(a, b) : a, b \in \mathbb{Z}, ab > 0\}$ (a) symmetric (c) symmetric and transitive		} defined on \mathbb{Z} is (b) reflexive and transitive (d) equivalence relation.						
	(ii)	Let $X = \{2, f\{(2,1), (5,1), (a) \text{ one - to -} (c) \text{ onto } \}$		The	mapping (b) many to (d) one – or	one	defined	as		
	(iii)	Which of the following operations is not a (a) Usual addition over \mathbb{Q} (c) Usual division over \mathbb{N}			a binary operation? (b) Usual multiplication over Q (d) Usual multiplication over N.					
	(iv)	In a group $(G,*)$ if $(x*y)^{-1} = x^{-1}*y^{-1}$ (a) G is finite (c) G is abelian			$\forall x, y \in G$, then (b) G is infinite (d) G is empty.					
	(v)	The number of (a) 60	of even permutations (b) 36	in the (c) 1	-	roup of degr (d) 120.	ee 5, i.e, S_5	is:		
	(vi)	If G be a group (a) non-abelia (c) non-cyclic	sarily a (b) cyclic gr (d) symmet	•						
	(vii)		\mathbb{Z}_6 , +), the order of [4 (b) 3			(d) 1.				
	(viii)	Which of the following is a subgroup of (7) (a) the set of all integers multiple of 3 (c) the set of all prime integers			•					
	(ix)	Which of the following is an example (a) \mathbb{Z}_4 (b) \mathbb{Z}_6 (c			of Integral Domain? (d) \mathbb{Z}_{10} .					

- (x) Which of the following is an example of non-commutative ring?
 - (a) residue class ring modulo 6
- (b) 2×2 matrices over a field
- (c) the ring of Gaussian integers
- (d) the ring of real numbers.

Fill in the blanks with the correct word

- (xii) The order of the permutation $(1\ 2\ 3\ 4)(5\ 6) \in S_6$ is ______.
- (xiii) The number of elements in the alternating group A_5 is ______.
- (xiv) The index of subgroup H of G is 5 and O(H) = 3. The order of the group G is _____.
- (xv) The number of unit element(s) of the ring \mathbb{Z} is ______.

Group - B

- 2. (a) For two elements $a, b \in \mathbb{Z}^+$, $a \sim b$ if a^3 divides b^3 . Prove that (\mathbb{Z}^+, \sim) is a poset. [(MTH2201.1, MTH2201.5)(Analyse/IOCQ)]
 - (b) Draw the Hasse diagram of the dual lattice of the lattice of divisors of 30 with respect to the divisibility relation. [(MTH2201.1, MTH2201.5)(Create/HOCQ)]

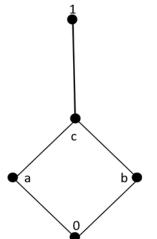
6 + 6 = 12

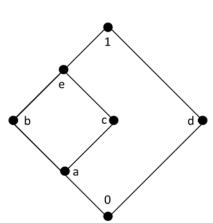
- 3. (a) Consider the poset $A = \{3, 5, 9, 15, 24, 45\}$ with the divisibility relation defined on A. (i) Draw its Hasse diagram.
 - (ii) Find its maximum, minimum, maximal and minimal elements.

[(MTH2201.1, MTH2201.5)(Create/HOCQ)]

(b) Are the following lattices distributive or not? Explain.

1) •





[(MTH2201.1, MTH2201.5)(Analyse/IOCQ)]

6 + 6 = 12

Group - C

4. (a) Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 3 & 6 & 4 \end{pmatrix}$ and $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 3 & 4 \end{pmatrix}$. Compute the following: (i) $\sigma \gamma$ (ii) $\gamma \sigma$ (iii) γ^{-1} . [(MTH2201.2,MTH2201.3,MTH2201.4,MTH2201.6)(Remember/LOCQ)]

- (b) Determine whether the following permutations in S_5 are even or odd. Find their orders. Justify your answers. (i) $(2\ 3\ 5)$, (ii) $(1\ 2)(2\ 3\ 4)(2\ 5\ 1)$, (iii) $(2\ 1\ 4\ 3)(3\ 5\ 1\ 2)$. [(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Apply/IOCQ)] 6 + 6 = 12
- Let (G,*) be a group. Prove that $(a*b)^{-1} = b^{-1}*a^{-1} \forall a,b \in G$. 5. (a) [(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Analyse/IOCQ)]
 - (b) Prove that the inverse of an element of a group is unique. [(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Understand/LOCQ)]
 - Show that the set $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a group with respect to usual (c) addition. Is this group abelian? Justify your answer.

[(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Evaluate/HOCQ)]

4 + 2 + 6 = 12

Group - D

- Let G be a group and $a \in G$ such that O(a) = n. Then prove that $a^m = e$ if and 6. (a) only if n divides m. [(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Analyse/IOCQ)]
 - Show that every subgroup of a cyclic group is a normal subgroup. (b)

[(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Analyse/IOCQ)]

(c) Find all the generators of the cyclic group \mathbb{Z}_7 with respect to the addition of residue classes modulo 7. [(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Understand/LOCQ)]

6 + 3 + 3 = 12

- 7. State and prove Lagrange's theorem regarding the order of a subgroup of a finite (a) [(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Analyse/IOCQ)] group.
 - (b) Consider the group (\mathbb{Z}_5 , +), i.e., the additive group of all integers modulo 5.
 - (i) Find the order of each of the elements of \mathbb{Z}_5 .
 - (ii) Show that the group $(\mathbb{Z}_5, +)$ is a cyclic group.
 - (iii) Find all the generators of the cyclic group $(\mathbb{Z}_5, +)$.

[(MTH2201.2, MTH2201.3, MTH2201.4, MTH2201.6)(Apply/IOCQ)]

6 + 6 = 12

Group - E

Let SO_2 be the special orthogonal matrices of order 2 and is given by 8. (a)

$$SO_2 = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} : x, y \in \mathbb{R}, x^2 + y^2 = 1 \right\}$$

 $SO_2 = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} : x, y \in \mathbb{R}, x^2 + y^2 = 1 \right\}.$ Define a map $\phi : \mathbb{R} \to SO_2$ as $\phi(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$. Prove that ϕ is a homomorphism from the additive group $(\mathbb{R},+)$ to the multiplicative group $(SO_2,\times).$ [(MTH2201.2, MTH2201.3, MTH2201.4)(Analyse/IOCQ)]

Prove that the only idempotent elements in an integral domain are zero and unity. (b) [(MTH2201.2, MTH2201.3, MTH2201.4)(Understand/LOCQ)]

6 + 6 = 12

- 9. (a) Let R be the ring of 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, where $a, b \in \mathbb{R}$. Show that although R is a ring that has no identity, we can find a subring S of R with an identity. [(MTH2201.2, MTH2201.3, MTH2201.4)(Analyse/IOCQ)]
 - (b) Let $(F, +, \cdot)$ be a field and $a, b \in F$ with $b \neq 0$. Then show that a = 1 when $(ab)^2 = ab^2 + bab b^2$. [(MTH2201.2, MTH2201.3, MTH2201.4)(Evaluate/HOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	17.70	57.29	24