MACHINE LEARNING (CSBS 3232)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

		Group – A	
1.	Answ	er any twelve:	12 × 1 = 12
		Choose the correct alternative f	for the following
	(i)	Which of the following is NOT typically in (a) Features (c) Training Data	cluded in input representation? (b) Noise (d) Labels
 (ii) Which of the following metrics is most useful to detect overf (a) High training accuracy and low test accuracy (b) Low training accuracy and high test accuracy (c) High training accuracy and high test accuracy (d) Low training accuracy and low test accuracy 			curacy curacy curacy
	(iii)	The VC Dimension of a perceptron in d-dim (a) 2d (c) d + 1	mensional space is: (b) d – 1 (d) Infinite
	(iv)	In a neural network, if the learning rate previous weight was 0.8, what is the upda (a) 0.794 (c) 0.648	
 (v) What is the purpose of likelihood in regression models? (a) To measure the probability of data given a model (b) To eliminate outliers (c) To normalize data (d) To reduce computation time 			
	(vi)	Recall is also known as (a) Accuracy (c) False positive rate	(b) Specificity(d) Sensitivity
	(vii)	Which component in a CNN is responsible (a) Softmax layer (c) Convolutional layer	for feature extraction? (b) Fully connected layer (d) Pooling layer

(viii)	What is the purpose of (a) To store raw data (b) To increase composition (c) To transform data (d) To delete unnecess	without modi utation time into a format		rning?	
(ix)	Which technique is m (a) Using a more com (b) Reducing the num (c) Increasing the num (d) Adding more train	plex model aber of training aber of param	-	ce in a model?	
(x)		ow many tota	ons, 2 hidden layers with loonnections (weights)		
		36	(c) 34	(d) 32	
			h the correct word		
(xi)	A key limitation of libetween input and ou	_	on is that it cannot mod s.	el relationships	
(xii)	For a hypothesis class that can shatter 6 points but not 7 points, the VC dimension is				
(xiii)	If a model misclassifies	s 30 out of 150	test samples, the accuracy	of the model is%.	
(xiv)	A commonly used technique to prevent overfitting by adding a penalty term to the loss function is called			ing a penalty term to	
(xv)	The points that lie closest to the decision boundary in an SVM and influence its position are known as				
		Grouj	o - B		
(a) (b)	State the main diffe		d regression algorithms. een supervised learnin	g and reinforcement	
(c)	learning. What is regularizatio objective functions in	•	and L2-regularization ning algorithms.	[(CO1)(Understand/LOCQ)] in the formulation of [(CO2)(Understand/LOCQ)] 3 + 3 + (2 + 4) = 12	
(a)		ant for linear reverse for $\sum_{i=1}^{m} \sum_{i=1}^{m} (y_i)$	gression, assume the $\cos(-wx_i)^2$	st function is given by:	
(b)	Given an initial weight and $(x_2, y_2)=(2, 2.8)$, pupdated weight. For a logistic regressing given as $w = [2, -1]$	nt w=0.5, learn perform two it on model with and bias b=0.5 of the logistic	ling rate α =0.1, and data erations of gradient desorations of gradient desorations are two input features x_1 , x_2 . If a new data point (x_3) function and determin	cent and compute the $[(CO2, CO6)(Apply/IOCQ)]$ (2), the weight vector is $(x_1, x_2) = (3,2)$ is given,	

2.

3.

Group - C

- 4. (a) "For unbalanced dataset, accuracy is not a good metric for classification" justify with an example.

 [(CO3)(Analyse/HOCQ)]
 - (b) There are 550 samples of men or women in a given dataset. Out of 60% women, 75% are classified correctly, and the remaining women are classified as men by a machine learning algorithm. On the other hand, in the men category, 85% are classified as men, and the remaining are classified as women.
 - i. Derive the confusion matrix.
 - ii. Calculate accuracy, precision, recall and F1 score.

[(CO3, CO6)(Apply/IOCQ)]

$$4 + (3 + 2 + 1 + 1 + 1) = 12$$

5. (a) A machine learning model is trained with increasing dataset sizes. The training error and validation error are recorded:

Training Size	Training Error	Validation Error
50	0.08	0.2
100	0.06	0.18
200	0.05	0.12
500	0.04	0.07
1000	0.03	0.06

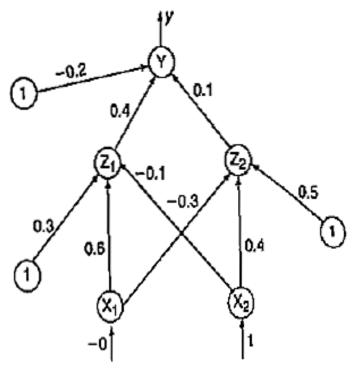
Identify if the model is overfitting or underfitting. Predict what would happen if more training data is added. [(CO3, CO6)(Apply/IOCQ)]

(b) Explain the bias-variance tradeoff with an example. How does increasing the complexity of a model affect bias and variance? [(CO3)(Understand/LOCQ)]

$$(3+3)+(3+3)=12$$

Group - D

6. Using the Hebb rule, find the weights required to perform the following classifications of the give it input patterns shown below. The pattern is shown as 3 x 3 matrix form in the squares. The "+" symbols represent the value" 1" and empty squares indicate "-1." Consider "I" belongs to the members of class and "0" does not belong to the members of class.


+	+	+
	+	
+	+	+
I		

+	+	+
+		+
+	+	+

0

[(CO4, CO6)(Apply/IOCQ)]

7. Using a back-propagation network, find the new weights shown in Figure below. It is presented with the input pattern [0, 1] and the target output is 1. Use a learning rate = 0.25 and binary sigmoidal activation function.

[(CO4, CO6)(Apply/IOCQ)]

19/10cQ)] **12**

Group - E

8. Find the equation of a decision boundary using SVM to classify the following data points:

Data point		Class level
D1	D2	
2	3	X
2	4	X
3	1	Y

[(CO5, CO6)(Apply/IOCQ)]

12

9. Consider a two-dimensional dataset with two classes:

Class 1: (0,2),(1,3),(2,2)

Class 2: (2,0),(3,-1),(1,-2)

i. Identify the support vectors and compute the margin width.

ii. Predict the class of the unknown point (1.5, 1.5).

[(CO5, CO6)(Apply/IOCQ)]

(6 + 6) = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	18.75	77.08	4.17