B.TECH/CSBS/4TH SEM/CBS2202/2025

COMPUTER ORGANIZATION AND ARCHITECTURE (CBS2202)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

		Gro	oup – A			
1.	Answ	er any twelve:		$12 \times 1 = 12$	2	
		Choose the correct alt	ernative for the fo	ollowing		
	(i)	In booth multiplication algorithms sequence) are inspected. (a) Qn+1 Qn (c) Qn Qn-1	(b) Qn-	the initialization bits (in proper (b) Qn-1 Qn (d) Qn Qn+1		
	(ii)	A non-pipeline system takes 50 processed in a six-segment pipe speedup ratio of the pipeline for (a) 21/100 (b) 100/21	eline with a clock	cycle of 10 ns. Determine the		
	(iii)	In which mode the main memory operand: (a) Immediate addressing (c) Register addressing	s the Effective Address of the ect addressing irect addressing	3		
	(iv)	 (a) refers to a computer system same time. (b) represents organization of processor unit and a memorial (c) includes many processing unit (d) none of the above 	n capable of proc f single comput ry unit.	essing several programs at the	Ξ,	
	(v)	The conflict observed in following Load R1 Load R2 Add R1, R2 Store R3 (a) Resource conflicts (c) Branch difficulties	(b) Dat	a dependency conflict		

(vi)	If memory access takes 20 ns with cache and 110 ns without it, then the ratio (cache uses a 10ns memory) is (a) 93% (b) 90% (c) 88% (d) 87%					
(vii)	What is the solution of branch difficulties generated in following program? Load R1 Increment R2 Add R3, R4 Subtract R6, R5 Branch X (a) Compiler inserts two nop instructions (b) Compiler rearranges by placing Add & Subtract instructions after branch (c) Compiler uses delayed load after Load instruction (d) Both (a) & (b)					
(viii	 Which memory has largest storage capacity among all? (a) Auxiliary memory (b) RAM (c) Associative memory (d) Cache memory 					
(ix)	What does the end instruction do? (a) It ends the generation of a signal (b) It ends the complete generation process (c) It starts a new instruction fetch cycle and resets the counter (d) It is used to shift the control to the processor					
(x)	Which of the following is lowest (from CPU) in memory hierarchy? (a) Cache memory (b) Secondary memory (c) Registers (d) RAM					
	Fill in the blanks with the correct word					
(xi)	Consider a computer with an address space of 8K and a memory space of 4K. I we split each into groups of 512 words, we obtain pages and blocks respectively.					
(xii)	An address in main memory is called					
(xiii	In CLC, If A=1, B=0, C=0, C+1=0 then the condition is					
(xiv	Both the CISC and RISC architectures have been developed to reduce the					
(xv)	The average time required to reach a storage location in memory and obtain its contents is called					
	Group - B					
(a)	Design a 4-bit ALU that can perform AND, OR, addition, and subtraction Implement the design using multiplexers and basic logic gates. Show the circuit diagram and truth table. [(CO2)(Apply/IOCQ)]					
(b)	Identify the addressing mode used in the following instructions: (a) MOV R1, #45					

2.

- (b) ADD R2, R3, R4
- (c) LDR R5, [R6]
- (d) SUB R1, [R2 + #10]

[(CO1)(Apply/IOCQ)]

8 + 4 = 12

3. Evaluate the arithmetic statement $X = ((A + B)^*(C+D)) / (E^*(F - G))$ using (i) zero address instructions (ii) one address instructions (iii) two address instructions and (iv) three address instructions. [(CO1)(Apply/IOCQ)]

 $(4\times3)=12$

Group - C

- 4. (a) For a computer system the page references are 7 0 1 2 0 3 0 4 2 3 0 3 2 having four frames. Calculate Hit and Miss ratio using FCFS and LRU page replacement algorithm. [(CO4)(Apply /IOCQ)]
 - (b) Let a computer system have cache capacity 64 KB, Main Memory capacity 1 MB, 2 KB page size, pages per set are 2. Show the size & different address fields in direct and set-associative mapping.

 [(CO4)(Apply /IOCQ)]
 - (c) Compare temporal and spatial locality of reference in memory.

[(CO4)(Understand /LOCQ)]

(3+3)+4+2=12

- 5. (a) "If the TLB and cache memory are working together, then the effective memory access time will be reduced" justify.

 [(CO4)(Evaluate/HOCQ)]
 - (b) According to the information, determine the number of bits of the subfields in the address for direct mapping, associative mapping and set-associative cache schemes.

Main memory size: 256 MB Cache memory size: 1 MB

Address space of the processor: 256 MB

Block size: 128 bytes

There are 8 blocks in a set.

[(CO3)(Apply/IOCQ)]

6 + 6 = 12

Group - D

- 6. (a) Prove that K stage linear pipeline can be at most k times faster than that of a non-pipelined serial processor. [(CO5)(Analyse/IOCQ)]
 - (b) A processor suffers from register dependencies for 40% of instructions, stalling for 2 cycles per dependency. If register renaming eliminates 75% of stalls, compute the speedup. [(CO5)(Apply/IOCQ)]
 - (c) A non-pipeline system takes 50ns to process a task. The same task can be processed in a six segment pipeline with a clock of 10 ns. Determine speedup ratio of the pipeline for 100 tasks.

 [(c05)(Apply/IOCQ)]

4 + 4 + 4 = 12

7. Consider the five-stage pipelined processor specified by the following reservation table.

	1	2	3	4	5	6	7	8	9
S 1	X					X			X
S2 S3 S4		X			X			X	
S 3			X				X		
S4				X					X
S5		X				X			

- (i) List the set of forbidden latencies and the collision vector.
- (ii) Draw a state transition diagram showing all possible initial sequences (cycles) without causing a collision in the pipeline.
- (iii) List all the simple cycles from the state diagram.
- (iv) Identify the greedy cycles among the simple cycles.
- (v) What is the minimum average latency (MAL) of this pipeline? [(CO5)(Apply/IOCQ)]

(2+4+2+2+2)=12

Group - E

- 8. (a) Draw data flow graph to represent the following computations:
 - (i) A = P + Q
 - (ii) B=A/Q
 - (iii) C=P*A
 - (iv) D=C-B
 - (v) E=C*A
 - (vi) F=D/E

[(CO6)(Apply/IOCQ)]

(b) Write down the advantages and disadvantages of Centralized shared memory architecture and distributed shared-memory architecture. [(CO6)(Understand/LOCQ)]

6 + 6 = 12

- 9. (a) Explain the organization of a microprogrammed control unit with a block diagram. [(CO6)(Remember/LOCQ)]
 - (b) What are the advantages and disadvantages of a hardwired and microprogrammed control unit? [(CO6)(Remember/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	20.83	72.92	6.25