NOVEL SEPARATION PROCESS (CHEN 3232)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

	Group – A							
1.	Answe	er any twelve:	12 × 1 = 12					
		Choose the correct alternative	e for the following					
	(i)	The separation mechanism for microfilt (a) solution-diffusion (c) sorption-diffusion	ration is (b) sieving (d) sieving, solution-diffusion					
	(ii)	The required range of pressure differen (a) < 2 bar (c) 7 – 70 bar	tial for nanofiltration is (b) 1 – 10 bar (d) 10 -100 bar					
	(iii)	Knudsen diffusivity (D_K) and absolute to (a) $D_K \alpha \ T$ (c) $D_K \alpha \ T^{0.5}$	emperature (T) are related as follows: (b) $D_K \alpha T^{-1}$ (d) $D_K \alpha T^{1.5}$					
	(iv)	The number of transfer units (N_T) for transfer coefficient (K_L) as: (a) $N_T \propto K_L$ (c) $N_T \propto K_L^2$	or dialysis is related to the overall mas $ \text{(b) } N_T \propto K_{L}^{-1} $ $ \text{(d) } N_T \propto K_{L}^{0.5} $					
	(v)	The transport mechanism in pervaporate (a) Molecular diffusion (c) Facilitated diffusion	tion is (b) Advection (d) Solution-diffusion					
	(vi)	For desalination of water which process (a) Pervaporation (c) Filtration	needs to be used? (b) Electrodialysis (d) Crystallization					
	(vii)	Cetylpyridinium chloride is a/an (a) cationic (c) amphoteric	surfactant (b) anionic (d) nonionic					
	(viii)	Ultrasonic cavitation involves (a) Bubble collapse (c) Bubble aggregation	(b) Bubble growth (d) Bubble growth and collapse					

With decrease in ionic strength, zeta pot (a) decreases (c) may increase or decrease	ential (b) increases (d) remains unaltered							
(a) maximum	(b) minimum							
Fill in the blanks with the	correct word							
Pore structure of a membrane can be determined by								
Using method, the largest pore size of a membrane can be determined.								
i) The most common material for a hemodialysis membrane is								
iv) For medical applications, frequency ultrasound is used.								
(xv) may be a reason for flux decline during ultrafiltration								
Group - B								
Obtain the expression of <i>concentration polarization modulus</i> . [(CO1)(Apply/IOCQ)] An enzyme is being concentrated in a cross-flow ultrafiltration module. The mass transfer coefficient at the membrane surface is 2.8×10^{-5} cm/sec. The bulk concentration is 0.3 mass%. If the water flux is $0.42 \text{ m}^3/\text{m}^2$.h and the diffusivity of the enzyme is 8×10^{-7} cm ² /sec., calculate the polarization modulus and thickness of mass-transfer 'film'. [(CO1)(Evaluate/HOCQ)]								
In case of reverse osmosis, prove that, $R = \frac{B(\Delta P - \Delta \Pi)}{1 + B(\Delta P - \Delta \Pi)}$	[(CO1)(Apply/IOCQ)]							
(b) A reverse-osmosis membrane to be used at 25°C for a NaCl feed solution containing 2.5 g NaCl/L, (density 999 Kg/m³) has a water permeability constated 4.81 x 10^{-4} Kg/(s.m².atm.) and a solute permeability constant 4.42×10^{-7} m. Calculate the water flux, solute rejection and solute concentration in permeating Given: $\Delta P = 27$ atm., $\Delta \pi = 1.9$ atm.								
Group - C								
	(c) may increase or decrease At the Iso electric point (IEP), solubility (a) maximum (c) neither maximum nor minimum Fill in the blanks with the Pore structure of a membrane can be de Using method, the largest pore The most common material for a hemod For medical applications, frequen may be a reason for flux declin Group - B Obtain the expression of concentration p An enzyme is being concentrated in a crot transfer coefficient at the membrane concentration is 0.3 mass%. If the water of the enzyme is 8×10^{-7} cm²/sec., of thickness of mass-transfer 'film'. Write down the applications of reverse of In case of reverse osmosis, prove that, $R = \frac{B(\Delta P - \Delta \Pi)}{1 + B(\Delta P - \Delta \Pi)}$ A reverse-osmosis membrane to be a containing 2.5 g NaCl/L, (density 999 Kg 4.81 x 10^{-4} Kg/(s.m².atm.) and a solute Calculate the water flux, solute rejection							

2.

3.

4. (a) A dialysis membrane is 20 micron thick, with a distribution coefficient of 0.5. The diffusivity of the solute through the membrane is 2×10^{-4} m²/s. If the film mass transfer coefficients for the feed side and permeate side are 1.5×10⁻⁶ m/s and 3×10⁻⁶ m/s respectively, calculate the solute flux for a feed solute concentration of 3 kmol/m³ and a permeate solute concentration of 0.2 kmol/m³.

[(CO2)(Apply/IOCQ)]

(b) Draw the solute concentration profile for solute transport across a dialysis membrane and explain the pattern. [(CO2)(Analyse/IOCQ)]

8 + 4 = 12

- 5. (a) A kidney patient's blood is being dialysed at 300 ml/minute, to reduce creatinine concentration from 150% to 10%. The overall mass transfer coefficient is 1.5×10-6 m/s. If the blood volume is 5 litres and it is to be dialyzed within 3 hours, how many membrane tubes need to be installed within the dialyser? Assume that each membrane tube is 1 m long and 20 cm in diameter. Also assume that the dialysate fluid is solute free and the dialysate flow rate is much more than the blood flow rate.
 - (b) Which type of dialyser will take a shorter time for dialysis: a co-current one or a counter-current one? Also which one will require a lesser area? Justify.

[(CO2)(Evaluate/HOCQ)]

6 + 6 = 12

Group - D

6. (a) With example discuss supercritical fluid extraction. State its advantages.

[(CO3)(Apply/IOCQ)]

(b) Obtain the expression for *terminal velocity* during centrifugation?

[(CO3)(Apply/IOCQ)]

(c) How can relative centrifugal force be calculated?

[(CO3)(Analyze/HOCQ)]5 + 4 + 3 = 12

- 7. (a) What is liquid membrane? With schematic diagrams, discuss transport through various types of Liquid membranes. [(CO3)(Apply/IOCQ)]
 - (b) Discuss an industrial application of separation using liquid membrane and its separation mechanism. [(CO3)(Remember/LOCQ)]
 - (c) Mention the applications and advantages of cloud point extraction.

[(CO3)(Understand/LOCQ)]

5 + 4 + 3 = 12

Group - E

- 8. (a) Define electro-osmotic flow. How does it affect electrophoresis performance? [(CO4)(Apply/IOCQ)]
 - (b) Write down Poisson-Boltzman equation and state its significance.

[(CO4)(Remember/LOCQ)]

(c) Define isoelectric point.

[(CO4)(Apply/IOCQ)]

6 + 4 + 2 = 12

- 9. (a) What do you understand by *electrophorectic mobility*? [(CO4)(Apply/IOCQ)]
 - (b) Give an example of electric field enhanced ultrafiltration. [(CO4)(Remember/LOCQ)]
 - (c) Discuss the sequence of steps carried out during ion-exchange chromatography of a sample. Give example of an ion exchanger. [(CO4)(Apply/IOCQ)]

3 + 3 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	16.67	56.25	27.08