MASS TRANSFER - II (CHEN 3202)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

1.

	Group – A	
Answ	ver any twelve:	$12 \times 1 = 12$
	Choose the correct alternative	for the following
(i)	In adiabatic humidifier (a) temperature of air increases (b) enthalpy of air and liquid temperature (c) enthalpy of air decreases (d) temperature increases, humidity decre	
(ii)	Dew point of an air-water vapour mixture (a) decreases with decrease in pressure (c) may decrease or increase	
(iii)	Algal growth is more prevalent in (a) natural draft (c) counter flow induced draft	cooling tower (b) cross-flow induced draft (d) forced draft
(iv)	uses centrifugal forc (a) Kuhni extractor (c) Rotating disc contactor	re for extraction (b) Bollman extractor (d) Podbielniak extractor
(v)	The sides of the equilateral triangular represents a (a) ternary mixture (c) pure component	coordinate (in ternary liquid system)(b) binary mixture(d) none of these.
(vi)	If W_s is the wet of dry solid, A the drying s final moisture content, and N_c the constar of drying during constant rate period in a (a) $\frac{W_s(X_1-X_2)}{AN_c}$ (c) $\frac{W_sN_c}{A(X_1-X_2)}$	nt rate of drying, the expression for time

(vii)	If the moisture content of a solid on wet b basis is	asis is 30%, the moisture content on dry			
	(a) 30% (c) 42.9%	(b) 70% (d) 50%			
(viii)	Solution-diffusion is the separation mech (a) Ultrafiltration (c) Reverse osmosis				
(ix)	The required range of pressure differents (a) less than 2 bar (c) 10-100 bar	al for microfiltration is (b) 2-10 bar (d) >100 bar			
(x)	Purification of enzyme is carried out by (a) Electrodialysis (c) Reverse osmosis	(b) Pervaporation(d) Ultrafiltration.			
	Fill in the blanks with the	correct word			
(xi)	Except 0 and 100 percent humidity, percerelative saturation.	entage saturation is always than			
(xii)	Due to Lewis relation, adiabatic saturation is wet-bulb temperature for water-air vapour mixture.				
(xiii)	The moisture content of a solid which exerts a partial pressure less than the normal vapour pressure of water at a given temperature is known as				
(xiv)	Pressure differential for reverse osmosis is generally				
(xv)	The removal of salts from an aqueous solution by transport through a electrically charged membrane is known as				
	Group - B				
(a)	What do you understand by wet-bulb				
(b)	psychrometric line. [(CO1)(Apply/IOCQ)] Calculate the humid volume of an air-water vapour mixture (abs. humidity= 0.015 kg water vapour/kg dry air) at 28° C and 1.2 atm. pressure. [(CO1)(Evaluate/HOCQ)] (2 + 7) + 3 = 12				
(a) (b)	Obtain the equation of adiabatic saturation Mention the classification of cooling tow induced draft cooling tower. Also mention	ver. Compare between forced draft and on the components of cooling tower.			
(c)	Why is makeup water required in a cooli	ng tower?			
	Croup C				

2.

3.

Group - C

4. (a) Give two examples for each of industrial extraction and leaching processes. Define 'selectivity' and 'distribution coefficient'. [(CO2)(Remember/LOCQ)]

(b) Mention the properties of a suitable solvent for Liquid-liquid extraction?

[(CO2)(Remember/LOCQ)]

(c) How do you classify commercial extractors?

[(CO2)(Remember/LOCQ)]

6 + 3 + 3 = 12

5. (a) Pure isopropyl ether (A) 660 kg/h is being used to extract an aqueous solution of 200 kg/h with 30 wt% acetic acid (C) by counter current multistage extraction at 25°C. The exit acid concentration in the aqueous phase is 10 wt%. Calculate the number of stages required.

Equilibrium data at 25°C is given below:

Water Layer (wt%)			Isopropyl ether layer (wt%)		
Acetic acid	Water	Isopropyl ether	Acetic acid	Water	Isopropyl ether
0.0	98.8	1.2	0	0.6	99.4
2.89	95.5	1.6	0.79	0.8	98.4
6.42	91.7	1.9	1.93	1.0	97.1
13.3	84.4	2.3	4.82	1.9	93.3
25.5	71.1	3.4	11.4	3.9	84.7
36.7	58.9	4.4	21.6	6.9	71.5
44.3	45.1	10.6	31.1	10.8	58.1
46.4	37.1	16.5	36.2	15.1	48.7

[mm graph paper required] In extraction, define plait point.

(b)

[(CO2)(Evaluate/HOCQ)]

[(CO2)(Remember/LOCQ)]

11 + 1 = 12

Group - D

6. (a) Wet porous catalyst pellets in the form of small cylinders, 14 mm diameter and 13 mm long are to be dried of their water content in a through circulation drier. The pellets are to be arranged in beds 50 mm deep on screens and dried by air flowing at 0.9 kg dry air/(m² bed cross-section).s entering at 82°C dry bulb temperature, humidity 0.01 kg water/kg dry air. Apparent bed density is 600 kg dry solids/m³ and particle surface 280 m²/m³ bed volume. Estimate the rate of drying and humidity and temperature of air leaving the bed during constant rate period. Given: viscosity of air =1.9×10⁻⁵ kg/m.s and saturation humidity =0.031 kg water/kg dry air corresponding to wet bulb temperature = 32°C, void fraction ϵ =0.237, Sc=0.6 for air-water vapour. The expression for Colburn j-factor is given as

$$j_D = \frac{2.06}{\varepsilon} \text{Re}^{-0.575}$$
 $k_Y = \frac{j_D G_s}{Sc^{2/3}} \text{Kg H}_2\text{O/m}^2.\text{s}.\Delta\text{Y}$

(psychrometric chart required)

[(CO3)(Evaluate/HOCQ)]

(b) In a tray dryer with convective heating, derive the expression for drying rate in terms of wet bulb temperature and humidity of air. [(CO3)(Apply/IOCQ)]

(c) Discuss the various mechanisms of moisture removal from a wet solid.

[(CO3)(Remember/LOCQ)]

6 + 3 + 3 = 12

- 7. (a) Distinguish between the working principles of vacuum shelf dryer and vacuum rotary dyer with labelled diagram of both. [(CO3)(Analyse/IOCQ)]
 - (b) Discuss the various steps of freeze drying. Sketch and explain the temperature profiles obtained in a freeze dryer. State the applications of freeze drying.

[(CO3)(Understand/LOCQ)]

(c) Explain the process of through circulation drying with a sketch.

[(CO3)(Remember/LOCQ)]

5 + 4 + 3 = 12

Group - E

- 8. (a) Mention membrane pore size range, membrane material, driving force and separation mechanism for reverse osmosis process. [(CO5)(Remember/LOCQ)]
 - (b) A liquid containing dilute solute A at a concentration of 3×10^{-2} Kg mol./m³ is flowing rapidly past a membrane of thickness 3.0×10^{-5} m. Distribution coefficient is 1.5 and diffusivity of solute A is 7.0×10^{-11} m²/s in the membrane. The solute diffuses through the membrane and its concentration on the other side of the membrane is 0.50×10^{-2} Kg mol./m³. The mass transfer coefficient in the feed side is large and can be considered as infinite, mass transfer coefficient on the other side of the membrane is 2.02×10^{-5} m/s.
 - (i) Obtain the equation to find steady-state flux.
 - (ii) Calculate the flux and solute concentrations at the membrane interfaces.

[(CO5)(Analyze/HOCQ)]

4 + 8 = 12

- 9. (a) Explain the working principle of a hollow fibre membrane module with diagram. [(CO5)(Remember/LOCQ)]
 - (b) Discuss the models for solvent flux in ultrafiltration. [(CO5)(Understand/LOCQ)]
 - (c) With a labelled schematic diagram, describe the process of micellar enhanced ultrafiltration. [(CO5)(Understand/IOCQ)]

4 + 5 + 3 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	45.83	25	29.17