B.TECH/CE/8TH SEM/MECH 4221/2025

QUANTITATIVE DECISION MAKING (MECH 4221)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and anv 4 (four) from Group B to E, taking one from each group.

1.

			Group - A			
Answ	er any twelve:				1	12 × 1 = 12
	Choo	ose the corre	ct alternative j	for the follov	ving	
(i)	If a decision the number of payo (a) 3 (b)	offs in that pr			es and 4 states of 4	nature, the
(ii)		so knows the		ssociated wi	the possible out th each outcome trategy	
(iii)	Which of the uncertainty? (a) maximin (c) minimax	following	criteria is n	(b) maxima	or decision-mak ax ze expected loss	J
(iv)	Activity which s (a) Dummy (c) Predecessor	•	ter finishing c	ther activity (b) Success (d) Null		
(v)	Event indicates (a) Starting (c) Both (a) & (_	,	(b) Ending (d) None o		
(vi)	Simplex method (a) all the point (b) only the cor (c) intermediat (d) only the intermediat	s in the feasi ner points of e points with	ble region f the feasible r iin the infeasi	region ole region	em uses	
(vii)	The solution to (destination) is (a) m+n	_	_	f positive al	ws (supplies) & locations are (d) m+n+1	'n' columns

(VIII	solution is said to be: (a) Feasible solution (c) Degenerate basic solutio		(b) Bas	ic Solution i degenerate basic solution					
(ix)	Hungarian algorithm is used (a) Transportation problem (b) Assignment problem (c) Unconstrained nonlinear p	r program							
(x)	While solving a Linear Prog constraints is called (a) Feasible region (c) Unbounded solution	graming m	(b) Infe	ically, the area bounded by the easible region n-bounded solution					
	Fill in the bla	nks with t	the correct w	vord					
(xi)	In a LPP, the dual of a dual is	S							
(xii)	In network diagrams, events are commonly represented by								
(xiii) The difference between the expected profit with perfect	-	-	der conditions of risk and the					
(xiv) In a Linear Programming Proceedings of the called function.		nctions to b	e maximized or minimized are					
(xv)	An assignment problem is a	particula	r case of	problem.					
		Group -	В						
(a)	A factory manufactures thr given below.	ee types	of boxes. Th	ne fixed and variable costs are					
		Fixed	Variable						
		Cost	Cost						
	$\frac{B_1}{B_1}$	20000	10						
	$\begin{array}{c c} B_2 \\ \hline B_3 \end{array}$	30000 50000	<u>8</u> 5						
				i. Poor demand: 2000 units, ii.					
	-			nd: 10000 units. If the sale price					
	of each type is Rs. 20, prepa			[(CO1)(Understand/LOCQ)]					
(b)	7 7			t from decision making under					
	condition of uncertainty.			[(CO1)(Understand/LOCQ)]					
				8 + 4 = 12					

3. (a) A newspaper boy has the following probabilities of selling a magazine:

2.

No. Copies Sold	10	11	12	13	14
Probability	0.10	0.15	0.20	0.25	0.30

Cost of a copy is 30 rupees and the sale price is 50 rupees. He cannot return the unsold copies. Determine how many copies should he order by following expected value criterion? [(CO1)(Analyse/IOCQ)]

Explain EVPI. (b)

[(CO1)(Remember/LOCQ)]

8 + 4 = 12

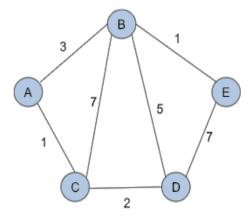
Group - C

4. (a) Draw the network diagram on the basis of the following data:

Activity	1-2	1-4	1-7	2-3	3-6	4-5	4-8	5-6	6-9	7-8	8-9	9-10
Time (Days)	2	2	1	4	1	5	8	4	3	3	5	2

Find the duration, critical path and total floats.

[(CO2)(Analyse/IOCQ)]


The duration and immediate predecessors of activities in a small project are (b) shown below:

Activity	Α	В	С	D	Е	F
Immediate Predecessor	-	-	I	A,B	В	В,С
Duration (Days)	5	3	7	8	4	5

Draw the network and calculate earliest and latest times and identify the critical path. [(CO2)(Apply/IOCQ)]

6 + 6 = 12

Find the shortest path in the given weighted graph by Dijstra's algorithm. (a)

[(CO2)(Apply/IOCQ)]

(b) A small project consists of 12 jobs as shown below.

Jobs	1-2	2-3	2-4	3-4	3-5	4-6	5-8	6-7	6-10	7-9	8-9	9-10
Duration (days)	2	7	3	3	5	3	5	8	4	4	1	7

Draw the network and mark the critical path.

[(CO2)(Apply/IOCQ)]

6 + 6 = 12

Group - D

Use Simplex Method to solve the following problem: (a) 6.

Maximize Z = 5x + 2y + 3z

Subject to -

 $x + 2y + 2z \le 8$

(b) Determine the initial basic feasible solution of the following transportation problem by Vogel's approximation method: [(CO5)(Apply/IOCQ)]

l sy segon spj		7	Capacity			
		W_1	W_2	W_3	W_4	
Factory	F ₁	19	30	50	10	7
	F_2	70	30	40	60	9
	F_3	40	8	70	20	18
Requirement		5	8	7	14	34

6 + 6 = 12

7. Three grades of coal A, B and C contain phosphorus and ash as impurities. In a particular industrial process, fuel up to 100 tons (maximum) is required which should contain ash not more than 3% and phosphorus not more than 0.03%. It is desired to maximize the profit while satisfying these conditions. There is an unlimited supply of each grade. The percentage of impurities and the profits of grades are given below.

Phosphorous Profits in rupees per ton Ash Coal (%)(%)0.02 12.00 A 3.0 15.00 В 0.04 2.0 C 0.03 5.0 14.00

- (i) Formulate the above as a linear programming problem (LPP).
- (ii) Select a suitable method to solve the LPP and find the optimal solution using that method. [(CO3)(Apply/IOCQ)]

12

Group - E

- 8. (a) Explain concave function and convex function. Also explain local maxima, local minima, global maxima and global minima. [(CO4)(Remember/LOCQ)]
 - (b) Determine if the following function is convex, concave or neither.

$$f(X) = 3x_1 + 2x_1^2 + 4x_2 + x_2^2 - 2x_1x_2$$

[(CO4)(Analyse/IOCQ)]

6 + 6 = 12

- 9. (a) Determine the relative maximum and minimum (if any) of the following function. $f(x) = x_1 + 2x_3 + x_2x_3 x_1^2 x_2^2 x_3^2$ [(CO4)(Analyse/IOCQ)]
 - (b) Solve the NLPP utilizing Lagrange multiplier method.

Maximize $Z = 4x_1 - x_1^2 + 8x_2 - x_2^2$,

Subject to $x_1 + x_2 = 2$,

 $x_1, x_2 \ge 0.$

[(CO4)(Evaluate/HOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	22.92	70.83	6.25