MATHEMATICAL METHODS (MTH2001)

Full Marks: 60 Time Allotted: 2½ hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

Answer any twelve: 1.

 $12 \times 1 = 12$

Choose the correct alternative for the following

For an infinite power series $\sum_{n=0}^{\infty} c_n x^n$ if $\lim_{n\to\infty} \left|\frac{c_m}{c_{m+1}}\right| = \mathbb{R}$ then the radius of (i) convergence is

(a) 1/R

- (b) R
- (c) 1
- The Frobenius method is particularly useful for solving differential equations when: (ii)
 - (a) The equation has constant coefficients.
 - (b) The equation has variable coefficients with a regular singular point.
 - (c) The equation has a regular point.
 - (d) The equation is non-linear.
- For a differential equation with a regular singular point at x = 0, the indicial (iii) equation is obtained by:
 - (a) Substituting the power series into the differential equation and setting the lowest power of x to zero.
 - (b) Differentiating the power series twice.
 - (c) Integrating the power series.
 - (d) Finding the roots of the characteristic polynomial.
- (iv) Which of the following recurrence relations do Legendre polynomials satisfy?
 - (a) $(n+1)P_{n+1}(x) (2n+1)xP_n(x) + nP_{n-1}(x) = 0$.
 - (b) $(2n + 1)xP_n(x) nP_{n-1}(x) = (n + 1)P_{n+1}(x) = 0.$
 - (c) $(n+1)P_n(x) P_{n+1}(x) + nP_{n-1}(x) = 0$.
 - (d) $(n+1)P_{n+1}(x) nP_{n-1}(x) = 0$.
- What is the standard form of Bessel's differential equation? (v)
 - (a) $x^2y'' + xy' + (x^2 n^2)y = 0$ (b) $y'' + xy' + (x^2 n^2)y = 0$ (c) $x^2y'' + 2xy' + (x^2 n)y = 0$ (d) y'' + y' + xy = 0
 - (c) $x^2y'' + 2xy' + (x^2 n)y = 0$
- (d) y'' + y' + xy = 0
- What is the differential equation satisfied by Hermite polynomials $H_n(x)$? (vi)
 - (a) y'' 2xy' + 2ny = 0
- (b) y'' + 2xy' 2ny = 0
- (c) y'' 2xy' + 2y = 0
- (d) y'' + xy' ny = 0

	(b) Second-order linear partial differential equations.(c) Non-linear partial differential equations.(d) Elliptic partial differential equations.				
(ix)	***	n by: (b) $u_t + c^2 u_{xx} = 0$. (d) $u_x + c u_t = 0$.			
(x)	Complementary function of the given PDE (a) $\phi_1(y+x) + \phi_2(y-6x)$. (c) $\phi_1(y+x).\phi_2(y+6x)$.				
Fill in the blanks with the correct word					
(xi)	(xi) The generating function for Hermite polynomials $H_n(x)$ is				
(xii)	For a non-integer n , the general solution of Bessel's equation is given by				
(xiii)	In Lagrange's method, the characteristic equations are written as $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$, and their solutions are two independent of these equations.				
(xiv)	The system of ordinary differential equations in Charpit's method is obtained from the PDE by introducing the relations $\frac{dx}{ds} = \frac{\partial F}{\partial p}, \frac{dy}{ds} = \frac{\partial F}{\partial q}, \frac{dz}{ds} = p \frac{\partial F}{\partial p} + q \frac{\partial F}{\partial q},$ where s is the				
(xv)	The Laplace transform is useful for solving boundary value problems because it converts partial differential equations into differential equations.				
	Group - B				
2. (a)	Obtain the Frobenius series solution near t 9t(1-t)x'' - 12x' + 4x = 0	= 0 of [(MTH2001.1, MTH2001.2)(Evaluate/HOCQ)]			
(b)	Show that infinity is not a regular singular p	**			
3. (a)	Find the radius of convergence of the powe	r series $\frac{x}{2} + \frac{1}{2} \cdot \frac{3}{5} \cdot x^2 + \frac{1}{2} \cdot \frac{3}{5} \cdot \frac{5}{8} x^3 + \cdots$ [(MTH2001.1, MTH2001.2) (Analyse/IOCQ)]			
(b)	Determine whether $x = 0$ is an ordinary period differential equation $2x^2 \frac{d^2y}{dx^2} + 7x(x+1) \frac{dy}{dx^2}$	oint or a regular singular point of the			

Which of the following is true for a homogeneous PDE?

(d) The PDE has the right-hand side equal to zero.

(a) First-order linear partial differential equations.

Lagrange's method is primarily used to solve:

(c) The PDE has all terms with the dependent variable and its derivatives.

(a) It contains no derivatives.

(b) It has no boundary conditions.

(vii)

(viii)

(c) Find the indicial equation of $x^2y'' + (x + x^2)y' + (x - 9)y = 0$.

[(MTH2001.1, MTH2001.2) (Apply/IOCQ)] 4 + 4 + 4 = 12

Group - C

- 4. (a) Prove that $P_n(t) = \sum_{r=0}^{\left[\frac{n}{2}\right]} \frac{1}{2^n n!} \frac{n!}{r!} \frac{(-1)^r}{(n-r)!} \frac{(2n-2r)!}{(n-2r)!} t^{n-2r}$. [(MTH2001.3)(Analyse/IOCQ)]
 - (b) Show that $\sin(x) = 2J_1 2J_3 + 2J_5 \cdots$ using the generating function of the Bessel functions. [(MTH2001.3)(Application/IOCQ)]

6 + 6 = 12

5. (a) Prove that $P'_n(1) = \frac{1}{2}n(n+1)$.

[(MTH2001.3)(Apply/IOCQ)]

(b) Evaluate $\int_{-\infty}^{\infty} x e^{-x^2} H_n(x) H_m(x) dx$.

[(MTH2001.3)(Evaluate/HOCQ)]

7 + 5 = 12

Group - D

- 6. (a) Solve the following partial differential equation by applying Lagrange's method: (mz-ny)p+(nx-lz)q=ly-mx, where l,m,n are constants and $p=\frac{\partial z}{\partial x}$, $q=\frac{\partial z}{\partial y}$. [(MTH2001.4, MTH2001.5)(Understand/LOCQ)]
 - (b) Construct a partial differential equation by eliminating the arbitrary function f from the relation: $z = e^{ax+by} f(ax+by)$. [(MTH2001.4, MTH2001.5)(Apply/IOCQ)]

6 + 6 = 12

- 7. (a) Obtain a partial differential equation by eliminating the arbitrary constants from the relation z = a(x + y) + b(x y) + abz + c where x and y are independent variables, and a, b, c are arbitrary constants. [(MTH2001.4, MTH2001.5)(Understand/LOCQ)]
 - (b) Find a partial differential equation by elimination of arbitrary function ϕ from $z = \phi\left(\frac{y}{x}\right)$. [(MTH2001.4, MTH2001.5)(Remember/LOCQ)]
 - (c) Solve $x^2p + y^2q = z^2$ where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

[(MTH2001.4, MTH2001.5)(Analyse/IOCQ)]

4 + 4 + 4 = 12

Group - E

- 8. (a) Solve $(D^2 2DD' + D'^2)z = e^{x+2y} + x^3$, where $D \equiv \frac{\partial}{\partial x}$, $D' \equiv \frac{\partial}{\partial y}$
 - [(MTH2001.5, MTH2001.6) (Remember/LOCQ)] (b) Solve $(4D^2 4DD' + D'^2)z = \log(x + 2y)$, where $D \equiv \frac{\partial}{\partial x}$, $D' \equiv \frac{\partial}{\partial y}$

[(MTH2001.5, MTH2001.6) (Remember/LOCQ)]

6 + 6 = 12

9. (a) A tightly stretched string with fixed end points x=0 and x=l is pulled from its middle portion and the initial position is given by $y=y_0\sin^3(\frac{\pi x}{l})$. It is released from rest at this position. Determine the displacement y(x,t) of the string.

[(MTH2001.5, MTH2001.6) (Apply/IOCQ)]

(b) Find the particular integral of the equation $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \sin(2x + 3y).$ [(MTH2001.5, MTH2001.6) (Remember/LOCQ)] 8 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	39.58	46.58	13.54