STRUCTURAL ANALYSIS – I (CIV2201)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

1.

Group – A						
Answe	er any twelve:	$12 \times 1 = 12$				
	Choose the correct alternative j	for the following				
(i)	A rigid-jointed plane frame is stable and s (a) (m+r) =2j (c) (3m+r) =3j	tatically determinate if (b) (m+r) =3j (d) (m+3r) =3j				
(ii)	Castigliano's theorem for deflection i.e. $\frac{\partial u}{\partial P} = \delta$ (deflection) is true for					
	(a) Linearly elastic structure (c) Non-linearly elastic structure	(b) Rigid structure(d) Any structure				
(iii)	A three hinged arch of span "l" and rise "h", an udl of "w" acts per unit length over the entire span, the horizontal reaction at each support is given by (a) $wl^2/8h$ (b) $wl^2/10h$ (c) $wl^2/4h$ (d) $wl^2/6h$					
(iv)	The influence line for bending moment in a simply supported beam is (a) A straight line (b) A triangular shape (c) A piecewise linear function with a peak at the considered point (d) A circular arc					
(v)	The maximum bending moment at a point in a simply supported beam due to a moving load occurs when (a) The load is placed at the support (b) The load is placed at the section under consideration (c) The load is at the midpoint of the beam (d) The load is at the farthest end from the section					
(vi)	The Muller-Breslau principle states that function in a beam can be obtained by	the shape of an influence line for a				

(b) Removing the constraint corresponding to that function and applying a unit displacement

(a) Applying a unit load at the required location

(c) Drawing a moment diagram due to a unit load

(d) Integrating the load distribution

(vii)	analysis of a three-spa (a) 1 (b)	an continuous		of equations required for the	
(viii)				settles down vertically, the	
	(a) Increased (b)	Decreased	(c) Remains un	nchanged (d) Becomes Zero	
(ix)	Which method is coindeterminate beams	-	to determine	influence lines for statically	
	(a) Method of joints (c) Müller-Breslau pri	(b) Conjugate beam method			
(x)	For a propped cantilever beam, the influence line for vertical reaction at support is				
	(a) A straight line (c) A parabolic curve			oic curve continuous function	
	Fill in	the blanks wit	h the correct wo	ord	
(xi)	The deflection at the free end of a cantilever beam carrying a concentrated load (P)				
(xii)	The Theorem of Three Moments expresses the condition of				
(xiii)	The strain energy of a structure due to bending is given by				
(xiv)	Bending moment at any section in a conjugate beam gives in the actual beam as				
(xv)	For a uniformly distributed moving load, the maximum bending moment occu when the load is placed over the beam.				
		Group	o - B		
	e hinged arch as shown	_	-	rantal parts AC and CB of radi	

2. 3m and 5m respectively. For the load system acting on the arch, calculate the reactions at the supports and the bending moments under the loads. [(CIV 2201.2,CIV 2201.3)(Analyse/IOCQ)]

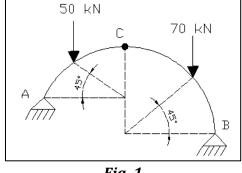
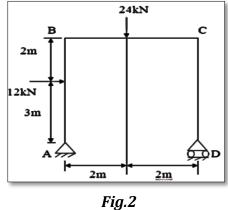
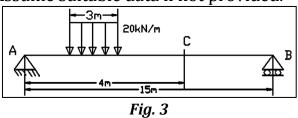
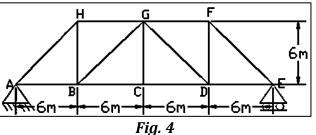



Fig. 1


12

3. Determine the horizontal displacement at roller support in the frame as shown in Fig. 2. Flexural rigidity EI is constant throughout. [(CIV2201.6)(Evaluate/HOCQ)]

Group - C


Prepare the ILD for reaction forces, shear force and bending moment at section C as shown 4. in Fig. 3. Evaluate the maximum value of shear and bending moment that can develop at section C under a uniformly moving load of 20kN/m moving from left end to right end having a length of 3m. Assume suitable data if not provided. [(CIV2201.6)(Analyse/IOCQ)]

12

12

Construct the influence line diagram for the force in members BC, BG and HG of the truss 5. shown in Fig. 4. [(CIV2201.6)(Analyse/IOCQ)]

12

Group - D

Find out the expression for horizontal reaction of the two-hinged parabolic arch (a) under the given loading as shown in Fig. 5. [(CIV2201.2, CIV2201.3)(Analyse/IOCQ)]

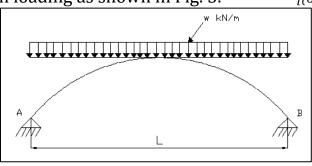
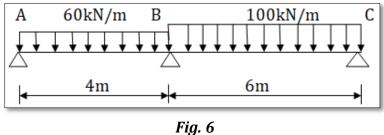
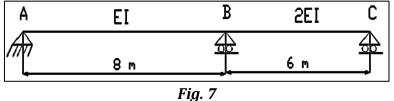



Fig. 5

(b) If the value of udl is 5 kN/m, central rise 4m and span of 30m for the above two hinged parabolic arch in Fig. 5, then find out the horizontal thrust on the arch. Also find out the bending moment at the crown. [(CIV2201.2, CIV2201.3)(Analyse/IOCQ)]

7 + 5 = 12

7. A continuous beam ABC as shown in Fig. 6 covers two consecutive spans AB and BC of lengths 4m and 6m carrying uniformly distributed loads of 60kN/m and 100kN/m respectively. If the ends A and C are simply supported find the support moments at A, B and C. Draw also B.M and S.F. diagram. [(CIV2201.5)(Analyse/HOCQ)]



12

Group - E

8. Compute the ordinates of influence lines for reaction at A for the beam shown in Fig. 7 at 1m interval and draw the influence line diagram. The moment of inertia is as shown in figure.

[(CIV2201.6)(Analyse/IOCQ)]

12

9. Draw the influence line diagram for shear force at D in the beam shown in Fig. 8 after computing the values of the ordinates at 1m interval. Flexural rigidity is constant throughout. [(CIV2201.6)(Analyse/IOCQ)]

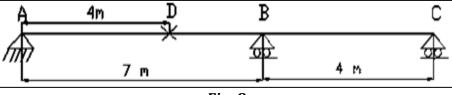


Fig. 8

12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	0	75	25