B.TECH/BT/6TH SEM/BIOT 3202/2025

BIOREACTOR DESIGN AND ANALYSIS (BIOT 3202)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Co

1.

	Group – A	
Answ	er any twelve:	12 × 1 = 12
	Choose the correct alternative	for the following
(i)	Yield coefficient represents (a) total biomass or product produced (b) conversion efficiency of a substrate in (c) conversion rate of a substrate into bio (d) production time of biomass or produc	omass or product
(ii)	What do you mean by "k _L a"? (a) Volumetric mass transfer coefficient (c) oxygen transfer coefficient	(b) Henry's law coefficient(d) Solute transfer coefficient
(iii)	If the rate equation is given byr _A = K C _A of the reaction will be (a) 1 and 1 (c) 2 and 1	$^{0.6}$ C _B $^{0.4}$ then the molecularity and order (b) 1 and 2 (d) 2 and 2
(iv)	Dispersion number is given by (a) D/UL (c) DL/U	(b) DU/L (d) L/DU
(v)	The parameter D, which we call axial disp (a) the degree of backing during flow (b) the degree of mixing during the flow (c) the degree of mixing during laminar fl (d) the degree of mixing during turbulen	low
(vi)	The kinetics of monoclonal antibodies are (a) growth associated (c) Monod model	e described by the type (b) non-growth associated (d) combination of (a) and (b).
(vii)	The units of second order rate constant is (a) mole/lit.sec (c) lit/mole sec	s (b) mole/sec (d) 1/mole

(viii)	Airlift fermenter may be design on the ba (a) plug flow (c) completely mixed system	sis of (b) plug flow with dispersion (d) segregated model
(ix)	Perfusion reactor is used for (a) vaccine formation (c) alcohol production	(b) animal cell culture(d) biomass production
(x)	Damkohler number (Da) is a measure of (a) pore diffusion (c) combination of (a) and (b)	(b) film diffusion(d) none of these
	Fill in the blanks with the o	correct word
(xi)	The ratio of tank diameter to impeller dia	meter in bioreactor is
(xii)	D = 0 (dispersion coefficient) means	of the tracer curve
(xiii)	In non-ideal reactors the parameter D, w uniquely characterized the degree of	
(xiv)	The concentration of A in a first order rea	ction, A \rightarrow R, decreases with time.
(xv)	Example of axial flow impeller is	
	Group - B	
cheme cell/g (i)	omonas sp has minimum doubling time of ostat operation that follows the Monod nacetate, and So= 38g/L. Find S and X when D=1/2 of Dmax. Find cell mass productivity at 0.8 Dmax.	<u> </u>
	Find Dwashout.	[(CO1)(Evaluate/HOCQ)] (4 + 4 + 4) = 12
(a) (b)	Differentiate between axial flow impeller A fermentation broth with viscosity 10 ⁻² I in a 2.7 m ³ baffled tank using a Rushton to speed 1 s ⁻¹ . Estimate the mixing time.	[(CO1)(Analyse/LOCQ)] Pa- $ m s$ and density $ m 1000~kg~m^{-3}$ is agitated
	of control of the con	6 + 6 = 12
	Group - C	
reacta	g flow reactor (PFR) (2 m ³) processes an adapt A (C_{A0} = 100 m mol/lit.). This reaction is (0.04 min ⁻¹) C_A (0.01 min ⁻¹) C_R .	· · · · · · · · · · · · · · · · · · ·
First f	ind the equilibrium conversion and then fireactor.	ind the actual conversion of reactant A [(CO2)(Apply/IOCQ) (2 + 10) = 12

2.

3.

4.

5. (a) The first-order reversible reaction $A \rightarrow R$, $C_{A0} = 0.5$ moles/lit., $C_{R0} = 0$ takes place in a batch reactor. After 8 minutes, conversion of A is 33.3 %while equilibrium conversion is 66.75 %. Find the rate equation for this reaction.

[(CO1)(Understand/IOCQ)]

(b) Find the first-order rate constant for the disappearance of A in the gas phase reaction $2A \rightarrow R$ if, on holding the pressure constant, the volume of the reaction mixture, starting with 80 % A, decreases by 20% in three minutes.

[(CO2)(Calculate/IOCQ)]

8 + 4 = 12

Group - D

6. (a) Explain the significance of C – curve.

[(CO2)(Remember/LOCQ)]

(b) The concentration reading given below represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel. Generate C –curve and E –Curve for the same.

time (t) min	0	5	10	15	20	25	30	35	infinite
C _{pulse} (gm/lit.)	0	3	5	5	4	3	2	1	0.0

[(CO5)(Analyse/HOCQ)]

4 + (4 + 4) = 12

7. (a) Explain the significance of R T D.

[(CO5)(Analyse/HOCQ)]

(b) Experimental tracer data given below:

t(min)	0	1	3	4	7	9	12	14	infinite
C _{pulse} (gm/m ³)	0	1	8	10	4	2.2	0.6	0.01	0.0

Determine the fraction of material leaving the reactor that has spent Between 4 to 7 minutes in the vessel. [(CO5)(Understand/IOCQ)]

3 + 9 = 12

Group - E

- 8. (a) What do you understand by membrane bioreactor? [(CO3)(Analyse/HOCQ)]
 - (b) What are the major consideration of membrane bioreactor? [(CO4)(Remember/LOCQ)]
 - (c) What are the application of membrane bioreactor? [(CO2)(Apply/IOCQ)]
 - (d) With the help of a clean diagram explain the operation of membrane bioreactor.

 [(CO3)(Apply/IOCQ)]

2 + 4 + 2 + 4 = 12

9. (a) Explain the relation between C_A and C_M in Michaelis-Menten enzyme kinetics for the first order behaviour and zero order behaviour.

$$-r_A = [K C_{E0} C_A] / [C_M + C_A]$$

[(CO3)(Analyse/HOCQ)]

(b) For the operation of immobilized enzyme reactor [M F R, V = 6 lit. reactor volume] following data were obtained. Substrate A pass through enzyme.

C _{E0} (mol/lit)	C _{A0} (mol/lit)	C _A (mol/lit)	v(lit/min) flow rate
0.02	0.2	0.04	3.0
0.01	0.3	0.15	4.0
0.001	0.69	0.60	1.2

From the entering (C_{A0}) and leaving (C_{A}) concentration and flow rate find a rate equation to represent the action of enzyme on substrate. [(CO3)(Analyse/HOCQ)]

4 + 8 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	14.58	40.63	44.79