B.TECH/BT/4TH SEM/BTC2201/2025

TRANSFER OPERATION-I (BTC2201)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

		Group -	A
1.	Answ	er any twelve:	12 × 1 = 12
		Choose the correct alternati	ive for the following
	(i)	The fluid, in which the shearing stres gradient across the sheared section, is (a) Newtonian (c) Bingham	s within it, is proportional to the velocity called a fluid (b) perfect (d) none of these
	(ii)	What is an ideal fluid? (a) fluid which has no viscosity (c) fluid which is incompressible	(b) fluid which has no surface tension(d) All the above
	 (iii) NPSH in centrifugal pump is defined as (a) the sum of the velocity head and the pressure head a (b) suction minus vapor pressure of the liquid at suction (c) sum of the velocity head and the pressure head at dis (d) discharge minus vapor pressure of the liquid at the or 		e pressure head at discharge e liquid at suction temperature essure head at discharge
	(iv)	Venturimeter is based upon the princi (a) Euler equation (c) Bernoulis equation	ple of (b) Navier-Stokes equation (d) none of these
	(v)	The main function of centrifugal pump (a) Transfer speed (c) Transfer temperature	os are to (b) Transfer pressure (d) Transfer energy
	(vi)	Counter flow heat exchanger is preferr (a) rapid initial cooling (c) gradual cooling	red for (b) uniform cooling (d) None of the above
	(vii)	Unit of overall heat transfer coefficient (a) m ² .K/W (c) W/m ² .K	t is (b) W/m.K (d) m.K/W

	(VIII)	Prandtl Number 1 (a) $C_P \mu / k$	is equal to (b) Dvρ/μ	(c) h _i D/k	(d) N	lone of the above	
	(ix)	Which of the folloof stones?	wing crushing la	ws is most acc	curately app	licable to the grinding	
		(a) Bond's Law	(b) Rittinger's L	aw (c) K	ick's law	(d) All the above	
	(x)			,	equation (d) Reynold's equation	
		Fi	ll in the blanks w	ith the correct	word		
	(xi)	Formula of LMTD) is				
	(xii)	Value of Stefan B	oltzmann's const	ant is	_		
	(xiii)	The fluid coming into the centrifugal pump is accelerated by					
	(xiv)	Unit of kinematic	viscocity of a flu	id	_		
	(xv)	Friction factor is	defined as				
			Grou	ıp - B			
	(a)	Derive Bernoulli'	s equation for flu	id flowing thi	ough a smo		
	(b)	fluid has a densit	y of 1120 kg/m^3 .	If 9.8×10^{-4} m	n ³ of fluid flo	id intravenously. The lows into the patient in [(CO3)(Compute/IOCQ)]	
	(a) (b)	Describe the flo	w behaviour of		-	minar condition and	
					aviour of fluid. [(CO2)(Understand/LOCQ)]		
			a) Bond's Law (b) Rittinger's Law (c) Kick's law (d) All the above diltration at constant pressure is given by a) Fourier's law (b) Fick's law (c) Ruth's equation (d) Reynold's equation Fill in the blanks with the correct word formula of LMTD is alue of Stefan Boltzmann's constant is the fluid coming into the centrifugal pump is accelerated by filt of kinematic viscocity of a fluid riction factor is defined as Group - B Berive Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing through a smooth pipe. Figure Bernoulli's equation for fluid flowing into the patient in very four hours, find the mass flow rate in kg/hr. Figure Bernoulli's equation for fluid flowing under laminar condition and flow behaviour of fluid flowing under laminar condition and flow behaviour of fluid flowing under laminar condition and flow flowing the flow behaviour of fluid. Figure Bernoulli's equation for fluid flowing under laminar condition and flowing through flowing f				
	(a)			calculated fo	r (i) suction		
	(b)	• •		Rotameter.		[(CO3)(Remember/LOCQ)]	
	(a)	measure the flow the U tube mand	rate of oil havin ometer connected	g specific gra	vity of 0.9. T urimeter is	The reading shown by 150 mm of mercury emeter if the flow rate	

2.

3.

4.

5.

Group - D

6. (a) Derive an expression for heat transfer through a hollow cylinder.

[(CO4)(Remember/LOCQ)]

(b) A small oxidized horizontal metal tube with an OD of 0.0254m and being 0.61m long with a surface temperature at 588K is in a very large furnace enclosure with fire-brick walls and the surrounding air at 1088K. The emissivity of the metal tube is 0.6 and 0.46 at 588K. Calculate the heat transfer to the tube by radiation.

[(CO5)(Calculate/IOCQ)]

6 + 6 = 12

- 7. (a) Derive a mathematical model for heat transfer through a compound wall made of three different layers. [(CO4)(Remember/LOCQ)]
 - Oil is flowing through a 75mm OD iron pipe at 1.5m/s. It is being heated by steam outside the pipe and the steam film coefficient is $11,000W/(m^2.^\circ\text{C})$. At the particular point along the pipe, the oil is at 50°C , its density is 880kg/m^3 , viscosity is 2.1 cP, thermal conductivity, k, is $0.135W/(m.^\circ\text{C})$, specific heat, Cp,= $217J/(g^\circ\text{C})$. What is the value of U_o , based on the outsideside area of the pipe? Given: $(h/(\text{Cp.v.p})(\text{Pr})^{2/3} = 0.023(\text{Re}) 0.2$.

6 + 6 = 12

Group - E

- 8. (a) What is the power required to crush 100tons/h of limestone if 80% of the feed passes a 2in screen and 80% of the product a 1/8 in screen? Work index of limestone is 12.74. [(CO5)(Calculate/IOCQ)]
 - (b) State Bond'a Law.

[(CO5)(Remember/LOCQ)]

(c) Derive Ruth's equation.

[(CO5)(Remember/LOCQ)]

6 + 2 + 4 = 12

9. Data for the laboratory filtration of $CaCO_3$ slurry in water at 298K are reported as follows at a constant pressure drop of $338KN/m^2$. The filter area of the plate and frame press was $A=0.0439m^2$ and the slurry concentration was $C_s=23.47kg/m^3$. Calculate the constants α and r_m from the experimental data given, where t is time in s and V is filtrate volume collected in m^3 . (Given: viscosity of water at 298K is $8.937x10^{-4}$ kg/m.s.)

Vx10 ³ (m ³)	0.5	1	1.5	2	2.5	3
t (s)	17.3	41.3	72	108.3	152	201.7

[(CO6)(Calculate/HOCQ)]

12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	39.5	29.2	31.3