COMPUTATIONAL MATHEMATICS (MATH 3221)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

1.

	any 4 (four)	from Group B to	o E, taking <u>one</u> j	from each gro	oup.	
andida	tes are require	(b) 8 (c) 31 (d) 16 If in the division of $^{96!}$ by 97 is (b) 1 (c) 95 (d) 96 If the recurrence relations $a_n - 5a_{n-1} + 6a_{n-2} = 0$ is $a_n + c_2 + c_2 + c_2 + c_2 + c_3 + c_2 + c_2 + c_3 + c_4 + c_4 + c_4 + c_5 $				
		Gro	oup – A			
Answe	er any twelve:				12 × 1 = 12	
	Cho	ose the correct al	ternative for the f	ollowing		
(i)	another in the	Tower of Hanoi p	roblem is			
	(a) 524287	(b) 2097151	(c) 419	94303	(d) 1048575	
(ii)	$[-2\pi]$ (a) -6	(b) −7	(c) -3	(d) -5		
(iii)	C(n,0) - C(n,1)	+C(n, 2)+(-1)	$\binom{n}{n}C(n,n)=$			
	(a) 1 (b)	0 (c) 2	(d) 2" (Here	n is a positive i	nteger)	
(iv)	The Stirling nu (a) 6			(d) 7		
(v)	$\varphi(32) =$ (a) 12	(b) 8	(c) 31	(d) 16		
(vi)	The remainder (a) 94		•	(d) 96		
(vii)		$+ C_26^n$	(b) a_n	$a_{n-1} + 6a_{n-2} = 0$ $= C_1 2^n + C_2 3^n$	ı	
(viii)	The function $\frac{1}{1+x^2}$ is the generating function of the sequence (a) $\{1,0,1,0,1,0,1,0,1,0\}$ (b) $\{1,-1,1,-1,1,-1\}$ (c) $\{2,0,2,0,2,0,2,0,2,0\}$ (d) $\{1,0,-1,0,1,0,-1,0,1,0\}$					
(ix)	If $S_n = \frac{1}{2}S_{n-1}$ a	nd $1 < S_0 < 2$, th	en $\lim_{n \to \infty} S_n =$			
	(a) 1		$(c) - \infty$	(d) 0		
(x)		the following is no 233 (c		nber? (d) ³⁷⁶		

Fill in the blanks with the correct word

(xi) The numl	per of subsets	s of a set h	aving ¹⁰ ele	ements is	
-----	------------	----------------	--------------	-------------------------	-----------	--

(xii)
$$\Delta^{6}(x^{\overline{4}}) = \underline{\hspace{1cm}}$$
.

(xiii)
$$C(100, 30) + C(100, 29) =$$

- The exponential generating function of the Bernoulli numbers is _____ (xiv)
- The Eulerian number E(4, 2) is ______. (xv)

Group - B

- Let T_n denote the minimum number of moves that will transfer n disks from one 2. (a) peg to another in the puzzle called the Tower of Hanoi. Prove that $T_n \ge 2T_{n-1} + 1$, where n is a positive integer. [(MATH3221.1, MATH3221.5, MATH3221.6)(Understand/LOCQ)]
 - Recall that $\sum_{0 \le k < n} k^{\frac{m}{2}} = \left\lceil \frac{k^{\frac{m+1}{2}}}{m+1} \right\rceil^n = \frac{n^{\frac{m+1}{2}}}{m+1}$, where m, n are non-negative integers. (b)

Use this result to prove that $\sum_{0 \le k \le n} k^2 = \frac{1}{3} n(n - \frac{1}{2})(n - 1)$.

[(MATH3221.1, MATH3221.5, MATH3221.6)(Analyse/IOCQ)]

7 + 5 = 12

Let the operators Δ and ∇ be defined as follows: 3. (a)

$$\Delta f(x) = f(x+1) - f(x),$$

$$\nabla f(x) = f(x) - f(x-1).$$

Compute $\Delta^3 x^{\underline{m}}$, $\nabla^6 (x^m)$, where $m \ge 7$ an integer is.

[(MATH3221.1, MATH3221.5, MATH3221.6)(Analyse/IOCQ)] Evaluate the sums $S_n = \sum_{k=0}^n (-1)^{n-k}$ and $T_n = \sum_{k=0}^n (-1)^{n-k} k$ assuming that $n \ge 1$ (b) [(MATH3221.1, MATH3221.5, MATH3221.6)(Analyze/IOCQ)] 0.

6 + 6 = 12

Group - C

- E(n,k)4. (a) denote the Eulerian numbers. Prove that E(n, k) = (k+1)E(n-1, k) + (n-k)E(n-1, k-1), where n > 0 is an integer. [(MATH3221.2, MATH3221.5, MATH3221.6)(Apply/IOCQ)]
 - Prove that gcd(km, kn) = k gcd(m, n), where k, m, n are all positive integers. (b) [(MATH3221.2, MATH3221.5, MATH3221.6)(Apply/IOCQ)]

6 + 6 = 12

Let F_k denote the Fibonacci numbers. Let $m \ge 2$ be a fixed integer. Prove that 5. (a) $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$ for all integers $n \ge 1$, by induction on n.

[(MATH3221.2, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)]

Let r, k be positive integers and r > k. Prove that $(r - k) \binom{r}{k} = r\binom{r-1}{k}$. (b) [(MATH3221.2, MATH3221.5, MATH3221.6)(Apply/IOCQ)]

6 + 6 = 12

Group - D

Prove that $lcm(km, kn) = k \ lcm(m, n)$, where k is a positive integer. 6. (a)

[(MATH3221.3, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)]

Prove, by mathematical induction, that if x is any real number other than 1, (b) then $\sum_{j=0}^{n-1} x^j = 1 + x + x^2 + \dots + x^{n-1} = \frac{x^{n-1}}{x-1}$.

By using this result, prove that, if m and n are positive integers and if m > 1, then $n < m^n$. [(MATH3221.3, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)]

6 + 6 = 12

- Find the remainder in the division of $5^{801} + 6^{202} + 39!$ by 41. State every result 7. (a) that you use and show your calculations.
 - [(MATH3221.3, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)] Prove that $|\sqrt{x}| = |\sqrt{x}|$, where x is a positive real number. (b)

[(MATH3221.3, MATH3221.5, MATH3221.6)(Remember/LOCQ)]

6 + 6 = 12

Group - E

- A particle is moving in the horizontal direction. The distance it travels in each 8. (a) second is equal to two times the distance it travelled in the previous second. If a_r denotes the position of the particle in the rth second, determine a_r , given that [(MATH3221.4, MATH3221.5, MATH3221.6) (Create/HOCQ)] $a_0 = 3$ and $a_3 = 10$.
 - Find the coefficient of X^{20} in $(X^3 + X^4 + X^5 + \cdots)^5$. (b)

[(MATH3221.4, MATH3221.5, MATH3221.6) (Analyse/IOCQ)]

6 + 6 = 12

Use the method of generating function to solve the recurrence relation 9. (a) $a_n = 4a_{n-1} - 4a_{n-2} + 4^n$; $n \ge 2$, given that $a_0 = 2$, $a_1 = 8$.

[(MATH3221.4, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)]

(b) Solve the recurrence relation

 $a_n = 5 \ a_{n-1} - 6 a_{n-2} + 3 n$, given that $a_0 = 0$ and $a_1 = 1$. [(MATH3221.4, MATH3221.5, MATH3221.6)(Analyse/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	13.54	48.46	37.50