## B.TECH/CSE(AI&ML)/CSE(IOT)/4<sup>TH</sup> SEM/ECE2002/2025

## DIGITAL CIRCUIT DESIGN (ECE2002)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

|    |                                                  | Group –                                                                                | A                                                                                  |  |  |
|----|--------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| 1. | Answ                                             | er any twelve:                                                                         | 12 × 1 = 12                                                                        |  |  |
|    | Choose the correct alternative for the following |                                                                                        |                                                                                    |  |  |
|    | (i)                                              | The code where all successive numbersingle bit is (a) Excess-3 Code (c) Cyclic Code    | ers differ from their preceding number by<br>(b) BCD<br>(d) Gray Code              |  |  |
|    | (ii)                                             | Simplified form of Boolean expression (a) 1 (c) C                                      | (A+B' +A'B) is<br>(b) 0<br>(d) C'                                                  |  |  |
|    | (iii)                                            | The output of a gate is low if any of its (a) AND (c) NOR                              | inputs is high. It is true for (b) XNOR (d) NAND                                   |  |  |
|    | (iv)                                             | Add the two BCD numbers: 1001 + 01 (a) 10101111 (c) 00010011                           | 00 = () <sub>BCD</sub><br>(b) 01010000<br>(d) 00101011                             |  |  |
|    | (v)                                              | The number of full adders required to (a) m/2 (c) m                                    | construct an m-bit parallel adder is<br>(b) m-2<br>(d) m+1                         |  |  |
|    | (vi)                                             | Maximum possible range of bit-count number of flip-flop is (a) 0 to 2n (c) 0 to (2n-1) | in an n-bit binary counter consisting of 'n' (b) 0 to $(2n+1)$ (d) 0 to $(2n+1)/2$ |  |  |
|    | (vii)                                            | A 4 bit counter is used to count 0, 1,2, (a) 8 (c) 32                                  | n. Value of n is<br>(b) 15<br>(d) 16                                               |  |  |

| (viii)     | In S-R flip-flop, if Q = 0 the output is said (a) Set (c) Previous state                                                                                                                                | (b) Reset<br>(d) Current state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (ix)       | In a CMOS NAND gate, in the Pull Down, the 2 NMOS transistors are in and the Pull Up, the 2 PMOS transistors are in (a) Parallel, Parallel (b) Parallel, Series (c) Series, Parallel (d) Series, Series |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (x)        | A 4 bit serial-in serial- out (SISO) shift re a bit from the input to the output (a) 4 (c) 6                                                                                                            | gister requiresclock pulses to shift (b) 5 (d) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Fill in the blanks with the                                                                                                                                                                             | correct word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (xi)       | $(\frac{1}{4})_{10}$ as a binary number would be _( ) <sub>2</sub>                                                                                                                                      | _•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| (xii)      | ii) An example of self-complementing code is                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (xiii)     | xiii) A half substactor can be realized by using at leastnumbers of NAND gate or NOR gates.                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (xiv)      | iv) FF makes output equals to input after clock ( act as buffer)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (xv)       | In a CMOS buffer, the minimum num required is                                                                                                                                                           | ber of transistors (NMOS and PMOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|            | Group - B                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (a)<br>(b) | f(A,B,C,D)=m(1.2.3.8.9.10.11)+d(7,15).                                                                                                                                                                  | [(CO1)(Analyse/IOCQ)]<br>ersal gates: Justify your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| (c)        | (i) $F(A, B, C) = AB + AC'(B+C)$                                                                                                                                                                        | [(CO1)(Remember/LOCQ)] ons using only NAND or NOR gates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|            | (ii) $F(A, B, C) = (A+B) + (A+C')(B+C)$ .                                                                                                                                                               | [(CO1)(Analyze/IOCQ)] $5 + 4 + 3 = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| (a)        | Apply K-map method, to obtain minimal l                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (b)        | Convert (i) $(743)_8 \rightarrow ()_{10}$ (ii) $(1100101)$                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (c)        | Simplify the boolean expression (P'+R)(I                                                                                                                                                                | $[(CO1)(Remember/LOCQ)]$ $P'+R')(P'+Q+R'). \qquad [(CO1)(Apply/IOCQ)]$ $4+(2+1+2)+3=12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|            | Group - C                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (a)<br>(b) |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|            | (ix) (xi) (xii) (xiii) (xiv) (xv) (a) (b) (c) (a) (b) (c)                                                                                                                                               | (a) Set (c) Previous state  (ix) In a CMOS NAND gate, in the Pull Down, the Pull Up, the 2 PMOS transistors are in (a) Parallel, Parallel (c) Series, Parallel (c) Series, Parallel (x) A 4 bit serial-in serial- out (SISO) shift reabit from the input to the output (a) 4 (c) 6  Fill in the blanks with the  (xi) (¼)10 as a binary number would be _()2 (xii) An example of self-complementing code (xiii) A half substactor can be realized by using or NOR gates.  (xiv) FF makes output equals to input a group of the parallel of the paralle |  |  |

2.

3.

4.

|    | (c) | Show how a 8-input MUX is used to generate the function $Y=(ABC)'D+BCD+A(BC)'+ABC'D$ [(CO3)(Evaluate/HOCQ)] $4+4+4=12$                                         |  |  |  |  |  |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 5. | (a) | Design a logic circuit that takes a 2-bit number as input and gives its square as                                                                              |  |  |  |  |  |
|    | (b) | output.                                                                                                                                                        |  |  |  |  |  |
|    |     | Group - D                                                                                                                                                      |  |  |  |  |  |
| 6. | (a) | Draw the logic diagram and the waveforms of a 3 bit binary ripple counter using that trigger during the positive add transition                                |  |  |  |  |  |
|    | (b) | T-FFs that trigger during the positive- edge transition. [(CO5)(Apply/100)] Hence identify the output from which a signal of frequency, f/4 may be obtain      |  |  |  |  |  |
|    | (c) | from such a circuit, where, f is the frequency of the clock signal. [(CO5)(Apply/IOCQ)] Convert S-R flip-flop to J-K flip-flop. [(CO4)(Apply/IOCQ)] $6+1+5=12$ |  |  |  |  |  |
| 7. | (a) | Design a MOD-8 synchronous up- counter (using JK FFs). Mention how the circuit                                                                                 |  |  |  |  |  |
|    | (b) | may be modified to convert it to a down counter. [(CO5)(Create/HOCQ)]  Design a MOD-8 ripple counter with T-FFs. [(CO5)(Apply/IOCQ)] $(6 + 2) + 4 = 12$        |  |  |  |  |  |
|    |     | Group - E                                                                                                                                                      |  |  |  |  |  |
| 8. | (a) | Construct an NOR circuit using a MOS transistor and explain its operation.                                                                                     |  |  |  |  |  |
|    | (b) | [(CO6)(Analyse/IOCQ)] CMOS switching speed is greater than PMOS/NMOS : Explain.                                                                                |  |  |  |  |  |
|    | (c) | Implement a NOT gate using a CMOS transistor. $[(CO6)(Remember/LOCQ)]$ $[(CO6)(Analyse/IOCQ)]$ $4 + 4 + 4 = 1$                                                 |  |  |  |  |  |
| 9. | (a) | Explain the working principle of SERIAL-IN, PARALLEL-OUT shift register with                                                                                   |  |  |  |  |  |
|    | (b) | suitable logic diagram. [(CO5)(Understand/LOCQ)]  Differentiate between ROM and RAM. Explain the basic differences between                                     |  |  |  |  |  |
|    | (c) | EPROM and EEROM? [(CO6) (Remember/LOCQ)] Elaborate the functions of a PLD programmer. Explain the applications of PLA. $[(CO6)(Apply/IOCQ)]$ $4 + 4 + 4 = 12$  |  |  |  |  |  |
|    |     | Cognition LevelLOCQIOCQHOCQPercentage distribution21.8757.2920.83                                                                                              |  |  |  |  |  |