ADVANCED NUMERICAL METHODS (MTH2202)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

Choose the correct alternative for the following

- A system of equations AX = b where $A = (a_{ij})_{n \times n}$ is said to be diagonally (i) dominant if
 - (a) $|a_{ii}| \ge \sum_{j=1}^{n} |a_{ij}|$ for all i. (c) $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$ for all i.

(b) $|a_{ii}| < \sum_{j=1}^{n} |a_{ij}|$ for all i. (d) $|a_{ii}| < \sum_{j=1}^{n} |a_{ij}|$ for all i.

 $12 \times 1 = 12$

- In Gauss-Jordan method, the given system of linear equations represented by (ii) AX = B is converted to another system PX = Q where P is
 - (a) diagonal matrix.

Answer any twelve:

1.

(b) identity matrix.

(c) upper triangular matrix.

- (d) lower triangular matrix.
- Which of the following statements is NOT true about the singular values in the (iii) matrix Σ from the SVD?
 - (a) Singular values are always non-negative.
 - (b) Singular values are sorted in decreasing order.
 - (c) Singular values are the square roots of the eigenvalues of A^TA .
 - (d) Singular values can be negative.
- The interval containing all the eigenvalues of the symmetric matrix $\begin{bmatrix} 3 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 3 \end{bmatrix}$ is (iv)

(a) [-1, 7].

(b) [-1, 9].

(c) [-7, 7].

(d) [1, 9].

The value of $\Delta^3[(1-x)(1-2x)(1-3x)]$ taking h = 1 is (v)

(a) 36.

(b) 37.

(c) -35.

(d) -36.

 Δe^x equals (vi)

(a) $e^{x+h} - e^x$

(c) $e^x - e^{x+h}$

(b) $e^x - e^{x-h}$ (d) $e^x(e^h - 1)$.

(vii)	$[x, x_0, x_1]$ equals
	(a) $\frac{[x,x_0]-[x_0,x_1]}{x-x_1}$
	$x-x_1$

(b)
$$\frac{[x,x_0]-[x_0,x_1]}{x_1-x}$$

(d) $\frac{[x,x_1]-[x,x_0]}{x_1-x_0}$.

(c)
$$\frac{[x_0,x_1]+[x,x_0]}{x+x_1}$$

To generate the j^{th} experiment in Golden Section Search algorithm, the length of (viii) the j^{th} experiment L_j is given by

- (a) $\frac{1}{\gamma^{j}}L_{0}$, (b) $\frac{1}{\gamma^{j+1}}L_{0}$, (c) $\frac{1}{\gamma^{j-1}}L_{0}$, (d) $\frac{1}{\gamma^{2j}}L_{0}$,

Out of the following algorithms, the one having the fastest rate of convergence is (ix)

(a) Dichotomous search.

- (b) Golden section search.
- (c) Interval halving method.
- (d) Fibonacci search.

In Fibonacci search, the search indices are determined (x)

- (a) by directly selecting the middle element in each step.
- (b) by choosing the largest element in each subinterval.
- (c) by using Fibonacci numbers to calculate the next indices in the sequence.
- (d) by selecting random indices in the array.

Fill in the blanks with the correct word

If $A = GG^T$ is the Cholesky factorization of a symmetric positive definite matrix (xi) A, then G is a _____ matrix.

In the Gauss elimination method, if any one of the pivot elements is zero, then the (xii) method will .

Newton backward interpolation formula is used for ______ intervals. (xiii)

If we go through r iterations, then the reduction ratio in Dichotomous Search (xiv) algorithm is _____

Geometrically, Simpson's one third rule for three points of interpolation (xv) represents a _____

Group - B

2. Is the following matrix positive definite? Justify your answer. (a)

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

[(MTH2202.1, MTH2202.4, MTH2202.6)(Understand/LOCQ)]

Find the value of the infinity norm and the Euclidean norm of the matrix A =(b) 9 16 [(MTH2202.1, MTH2202.4, MTH2202.6)(Remember/LOCQ)]

Find the solution of the given system of equations by Gauss Jacobi's method (c) correct to 2 decimal places.

$$10x + y - z = 11.19$$

$$x + 10y + z = 28.08$$

[(MTH2202.1, MTH2202.4, MTH2202.6)(Apply/IOCQ)]

-x + y + 10z = 35.61.

Solve the following system of equations by Cholesky's decomposition method: 3. (a)

$$x + 2y + 3z = 20$$

 $2x + 8y + 22z - 1$

2x + 8y + 22z = 15

[(MTH2202.1, MTH2202.4, MTH2202.6)(Evaluate/HOCQ)]

3x + 22y + 82z = 5.

Find the inverse of the following matrix, using Gauss-Jordan method: (b)

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{bmatrix}.$$

[(MTH2202.1, MTH2202.4, MTH2202.6)(Apply/IOCQ)]

7 + 5 = 12

Group - C

- Find the QR decomposition of $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$. Hence, find the least squares solution of the system Ax = b, where $b = \begin{bmatrix} 5 \\ 8 \\ 11 \end{bmatrix}$. [(MTH2202.3, MTH2202.4, MTH2202.6)(Analyse/IOCQ)] (a)
 - Sketch the Gerschgorin's circles to estimate the bounds for the eigenvalues of the (b) matrix 2 5 3. Shade and mention the smallest region containing all the eigenvalues of the given matrix. [(MTH2202.3, MTH2202.4, MTH2202.6)(Understand/LOCQ)]

8 + 4 = 12

Find the singular values, and hence the Singular Value Decomposition of the matrix

$$\begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}.$$

[(MTH2202.3, MTH2202.4, MTH2202.6)(Evaluate/HOCQ)]

12

Group - D

Evaluate $\int_0^1 \frac{1}{1+x} dx$ by using Simpson's $\frac{1}{3}^{rd}$ rule, taking eleven ordinates, and hence (a) find the value of $\log_e 2$ correct up to five significant figures.

[(MTH2202.2, MTH2202.6)(Understand/LOCQ)]

Find the value of $\sqrt{2}$ using Newton forward interpolation formula for the given (b) data:

X	1.9	2.1	2.3	2.5	2.7
f(x)	1.3784	1.4491	1.5166	1.5811	1.6432

[(MTH2202.2, MTH2202.6)(Apply/IOCQ)]

6 + 6 = 12

A curve passes through the points given by the following table: 7. (a)

F -		-0 F					
χ	1	1.5	2	2.5	3	3.5	4
y	2	2.4	2.7	2.8	3	2.6	2.1

Using Weddle's rule, find the area bounded by the curve, the x-axis and the lines x = 1, x = 4. [(MTH2202.2, MTH2202.6)(Understand/LOCQ)]

(b) The table gives the distance in nautical miles, of the visible horizon for the given heights *m* feet above the earth's surface:

x (height)	100	150	200	250	300	350	400
y (distance)	10.63	13.03	15.04	16.81	18.42	19.96	21.27

Use Newton's forward interpolation formula to find the value of y where $x = 218 \, ft$. [(MTH2202.2, MTH2202.6)(Apply/IOCQ)]

6 + 6 = 12

Group - E

8. (a) Apply the principle of least squares to fit a straight line to the following data:

\boldsymbol{x}	2	4	6	8	10	12	14
у	10	14	15	16	15	17	18

[(MTH2202.5, MTH2202.6)(Apply/IOCQ)]

(b) Use the Golden Section Search technique to maximize the function $f(x) = -3x^2 + 21.6x + 1$ in the interval [0, 25] taking tolerance to be less than 1.0.

[(MTH2202.5, MTH2202.6)(Apply/IOCQ)]

5 + 7 = 12

9. Use Dichotomous Search algorithm to minimize $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ over [0, 2] using tolerance 0.3. Consider $\epsilon = 0.001$. [(MTH2202.5, MTH2202.6)(Apply/IOCQ)]

12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	22.92	57.29	19.79