EM THEORY & TRANSMISSION LANES (ECE2203)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

1.

any 4 (four) from Group B to E, taking one from each group.					
andid	ates are required to give answer in their own words as far as practicable.				
	Group – A				
Ans	wer any twelve: $12 \times 1 = 1$				
	Choose the correct alternative for the following				
(i)	Which equation will hold good for a magnetic material? (a) Line integral of B is zero (b) Surface integral of H is zero (c) Line integral of H is zero (d) Surface integral of B is zero				
(ii)	For a time-harmonic electric field $\mathbf{E} = E_0 e^{(\boldsymbol{\omega} t - kz)} \mathbf{a_y}$ in free space, which of th following expressions represents the wave number k? (a) $\mathbf{k} = \boldsymbol{\omega}/\mathbf{c}$ (b) $\mathbf{k} = \mathbf{c}/\boldsymbol{\omega}$ (c) $\mathbf{k} = \boldsymbol{\omega}/\epsilon_0 \mu_0$ (d) $\mathbf{k} = 1/\sqrt{\epsilon_0 \mu_0}$				
(iii)	The flux through each turn of a 100-turn coil is $(t^3 - 2t)$ mWb, where t is i seconds. The induced emf at $t = 2$ s is (a) 1V (b) -1V (c) 4Mv (d) 0.4V				
(iv)	Which of the following equations is not Maxwell's equation (a) $\nabla \cdot \boldsymbol{J} + \frac{\partial \rho_{v}}{\partial t} = 0$ (b) $\nabla \cdot \boldsymbol{D} = \rho_{v}$ (c) $\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$ (d) $\oint \boldsymbol{H} \cdot d\boldsymbol{l} = \int \left(\sigma \boldsymbol{E} + \epsilon \frac{\partial \boldsymbol{E}}{\partial t} \right) \cdot d\boldsymbol{S}$				
(v)	If $\mathbf{E}_s = 10 \ e^{j4x} \ \mathbf{a}_y$, which of the following is incorrect representation of \mathbf{E} ? (a) $\operatorname{Re}(\mathbf{E}_s e^{j\omega t})$ (b) $\operatorname{Im}(\mathbf{E}_s e^{j\omega t})$ (c) $10 \cos(\omega t + j4x)$ (d) $10 \sin(\omega t + 4x)$				
(vi)	Given that the reflection coefficient is 0.6. Find the SWR. (a) 2 (b) 4 (c) 6 (d) 8				
(vii)	Find the characteristic impedance expression for lossless transmission (a) $Zo = L/C$ (b) $Zo = \sqrt{(L/C)}$ (c) $Zo = \sqrt{(LC)}$ (d) $Zo = LC$				
(viii	The radiation resistance of a Hertzian dipole is typically very small because (a) The dipole is electrically large (b) The dipole is a short current element (c) It operates at high frequencies (d) It has a high input impedance				

- (ix) The radiation pattern of a Yagi-Uda antenna is
 - (a) Omnidirectional
 - (b) Bidirectional
 - (c) Highly directional with a main lobe in the direction of the director
 - (d) Isotropic
- (x) A linear array of 6 elements is designed to operate at 2.5 GHz with an interelement spacing of 0.2λ . What is the physical distance between the elements in meters?
 - (a) 0.012 m
- (b) 0.024 m
- (c) 0.036 m
- (d) 0.048 m

Fill in the blanks with the correct word

- (xi) $\frac{\partial \mathbf{D}}{\partial t}$ is called as _____ current.
- (xii) Two dielectric mediums are characterized by $\eta_1 = 5$ and $\eta_2 = 3$. The reflection coefficient from medium 2 to medium 1 is ______.
- (xiii) The condition for a distortionless line is ______.
- (xiv) A load impedance of 250 ohm is connected to a 75 ohm line. Reflection coefficient is_____.
- (xv) If an antenna array has elements spaced by $\lambda/2$, the phase difference required for broadside radiation is _____ degrees.

Group - B

2. (a) Write Maxwell's equations in point form.

[(CO1)(Remember/LOCQ)]

(b) In a charge-free region for which σ = 0, μ = μ_0 , and ϵ = $\epsilon_0\epsilon_r$

 $H = 5\cos(10^{11} t- 4y) a_z$ A/m

Find: (a) J_d and D, (b) ε_r

[(CO1)(Analyse/IOCQ)]

(c) Differentiate between induced EMF and electrostatic potential.

[(CO1)(Remember/LOCQ)]

$$3 + 7 + 2 = 12$$

- 3. (a) A conducting loop is moving with a velocity u in a time varying magnetic field B. With proper explanation, derive expression of induced emf and corresponding electric field. [(CO1)(Remember/LOCQ)]
 - (b) A conducting bar can slide freely over two conducting rails. Evaluate the induced voltage in the bar if the bar slides at a velocity $\mathbf{u}=20~\mathbf{\hat{a}}_y$ m/s and $\mathbf{B}=4\cos(10^6t-y)~\mathbf{\hat{a}}_z$ mWb/m². [(CO1)(Evaluate/HOCQ)]

Group - C

- 4. (a) In terms of η , β , α and \boldsymbol{u} of plane wave, compare the propagation in free space and in lossless dielectric medium [(CO3)(Remember/LOCQ)]
 - (b) A lossless dielectric has an intrinsic impedance of $200 \angle 30^o$ Ω at a particular frequency ω , If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component

$$\boldsymbol{H} = 10e^{-\alpha x}\cos\left(\omega t - \frac{1}{2}x\right)\widehat{\boldsymbol{a}}_{y} A/m$$

Find ${\it E}$ and ${\it \alpha}$. Determine the skin depth and wave polarization. [(CO3)(Apply/HOCQ)]

$$6 + 6 = 12$$

5. (a) Derive Poynting's theorem.

[(CO3)(Remember/LOCQ)]

(b) In a nonmagnetic medium $\mathbf{E} = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{\mathbf{a}}_z$ V/m. Find the time-averaged power carried by the wave. [(CO3)(Analyze/IOCQ)]

$$6 + 6 = 12$$

Group - D

6. (a) Derive the characteristic impedance of a transmission line having length L.

[(CO3)(Analyse/IOCQ)]

(b) A distortionless line operating at 120 MHz has $R = 20 \Omega/m$, $L = 0.3 \mu H/m$, and C = 63 pF/m. (a) Determine γ , u, and Z_0 . (b) How far will a voltage wave travel before it is reduced to 20% of its initial magnitude? [(CO3)(Analyse/IOCQ)]

$$6 + 6 = 12$$

7. (a) Consider the three lossless lines in Figure.

If $Z_0 = 50\Omega$, Evaluate

- (i) Z_{in} looking into line 1
- (ii) Z_{in} looking into line 2
- (iii) Z_{in} looking into line 3

[(CO4)(Evaluate/HOCQ)]

(b) Find the voltage reflection coefficient at the load end for a transmission line circuit connect to a load Z_L . Assume characteristic impedance of transmission line is Z_0 [(CO3)(Remember/LOCQ)]

$$6 + 6 = 12$$

Group - E

- 8. (a) A transmitting antenna has an effective aperture of 0.5 m² and operates at 3 GHz. Calculate its directivity. [(CO5)(Analyse/HOCQ)]
 - (b) Define a half-wave dipole antenna and describe its radiation pattern.

[(CO5)(Remember/LOCQ)]

(c) What is the difference between beamwidth and directivity? How does beamwidth affect antenna performance? [(CO5)(Apply/IOCQ)]

3 + 4 + 5 = 12

- 9. (a) Compare and contrast a uniform and a non-uniform linear antenna array in terms of excitation, directivity, and sidelobe control. [(CO6)(Analyse/HOCQ)]
 - (b) Explain the role of the array factor in determining the radiation pattern of a linear antenna array. [(CO6)(Remember/LOCQ)]
 - (c) A uniform linear array consists of 5 isotropic elements spaced $\lambda/2$ apart. Determine the array length if the operating frequency is 3 GHz. [(CO6)(Apply/IOCQ)]

4 + 4 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	38.54	35.42	26.04