B.TECH/ECE/4TH SEM/ECE2205/2025

ELECTRONIC DEVICES (ECE2205)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group R to F taking one from each group

1.

	uny 4 your j ji om aroup B to I	, taking <u>one</u> ji om cach group.				
and	andidates are required to give answer in their own words as far as practicable.					
	Grou	p – A				
An	answer any twelve:	12 × 1 = 12				
	Choose the correct alter	rnative for the following				
(i)		semiconductor have an average drift velocity v uniform magnetic field B . The electric field E he direction (b) B x v (d) opposite to v				
(ii)	ii) Electron transition in indirect ban (a) a change of momentum of elec (b) a change of potential energy of (c) change of both the momentum (d) none of these	tron only f electron only				
(iii	iii) A Zener diode in breakdown regio (a) Tunnelling of charge carriers a (b) thermionic emission (c) diffusion of charge carriers acr (d) hopping of charge carriers acr	cross the junction oss the junction				
(iv		nnction, the doping level of the n-side is 4 times ne ratio of the depletion layer width of n-side (b) 0.5 (d) 2.0				
(v)	v) The Early effect in a bipolar juncti (a) fast turn-on (b) fast turn-off (c) increase in collector-base reve (d) increase in emitter-base forwa	rse bias				

(V1)	In which one of the following modes of operation the E _F of base region remains lower than the E _F of both the emitter and collector regions for an npn BJT? (a) saturation mode (b) cut-off mode (c) forward active mode (d) reverse active mode
(vii)	Which one of the following is a small signal model for BJT? (a) Ebers-Moll model (b) Gummel-Poon model (c) Hybird-Pi model (d) none of these
(viii)	The channel length modulation effect of MOSFET is observed in (a) linear mode (b) saturation mode (c) cut-off mode (d) both linear & saturation modes
(ix)	At threshold inversion point in a MOS structure, the relation between surface potential $\varphi_s(inv)$ and Fermi potential φ_F of the semiconductor body is (a) $\varphi_s(inv) = (\varphi_F)^2$ (b) $\varphi_s(inv) = \varphi_F/2$ (c) $\varphi_s(inv) = \varphi_F$ (d) $\varphi_s(inv) = 2\varphi_F$
(x)	In an n-channel enhancement type MOSFET what happens when V _{GS} <v<sub>T? (a) The MOSFET conducts maximum current. (b) The MOSFET is in the cut-off mode. (c) The MOSFET is in the saturation mode. (d) The MOSFET is in the triode region.</v<sub>
	Fill in the blanks with the correct word
(xi)	Effective mass of electron is inside valence band.
(xii)	The dc current gain of BJT is 50. Assuming that the emitter injection efficiency is 0.995, the base transport factor is
(xiii)	A MOSFET can be used as an amplifier in region of operation.
(xiv)	The threshold voltage of an n-type enhancement type MOSFET is 0.5V. When the device is biased at a gate voltage of 3V, pinch-off would occur at drain voltage of
(xv)	For n-channel MOSFET device we always choosetype substrate.
	Group - B
(a)	Define density of states and plot it as a function of energy for both the conduction and valance hands

semiconductor with proper plots.

Discuss the effects of doping & temperature on Fermi energy level in

[(CO2)(Analyze/IOCQ)]

2.

(b)

(c) In a n-type semiconductor at T=300K, the electron concentration varies linearly from 2×10^{18} to 5×10^{17} per cc over a distance of 1.5mm and the diffusion current density is 360 A/cm². Find the mobility of electrons. [(CO2)(Apply/IOCQ)]

4 + 4 + 4 = 12

- 3. (a) Explain the concept degeneracy in p-type doped semiconductor with proper energy band diagram. [(CO2)(Understand/LOCQ)]
 - (b) Derive the expression for drift current density due to electrons in a semiconductor. [(CO2)(Apply/IOCQ)]
 - (c) Can effective mass of electron be negative? Explain. [(CO2)(Analyze/IOCQ)]
 - (d) A silicon sample A is doped with 10^{18} atoms/cm³ of Boron. Another sample B of identical dimension is doped with 10^{17} atoms/cm³ of Phosphorous. The ratio of electron to hole mobility is 3. Find the ratio of conductivity of the sample A to B.

 [(CO2)(Evaluate/HOCQ)]

3 + 3 + 3 + 3 = 12

Group - C

- 4. (a) Explain the operating principle of a Tunnel diode along with V-I characteristic and proper energy band diagrams. [(CO5)(Understand/LOCQ)]
 - (b) Explain the formation of a metal semiconductor Schottky contact with proper energy band diagram. [(CO3)(Create/HOCQ)]
 - (c) Explain the formation of 2-D electron gas in hetero-junction with proper example and band diagram. [(CO3)(Create/HOCQ)]

5 + 4 + 3 = 12

- 5. (a) Explain the formation of a semiconducting hetero-structure of rectifying nature with proper energy band diagram. [(CO3)(Create/HOCQ)]
 - (b) Define maximum power efficiency and fill factor for Solar cell.

[(CO4)(Understand/LOCQ)]

(c) Derive the expression of diffusion capacitance for a p-n junction and plot it against biasing voltage. [(CO4)(Apply/IOCQ)]

4 + 4 + 4 = 12

Group - D

6. (a) Explain the Eber's Moll Model of BJT and write the current equations.

[(CO4)(Analyse/IOCQ)]

(b) Explain punch through in BJT with proper energy band diagram.

[(CO4)(Understand/LOCQ)]

(c) An n-p-n transistor at room temperature has its emitter open circuited. A voltage of 5V is applied between collector and base with collector positive and a current of 0.2 μ A flows. When the base is open circuited and the same voltage is applied between collector and emitter, the current is found to be 20 μ A. Find α , I_E and I_B, when collector current is 1mA.

6 + 3 + 3 = 12

- 7. (a) Develop Hybrid-Pi model for an npn BJT in CE configuration. [(CO4)(Create/HOCQ)]
 - (b) For the BJT circuit shown in the figure, assume that the β of the transistor is very large and $V_{BE} = 0.7V$. Find the operating mode of the given BJT. Also evaluate the values of collector current I_C and output voltage V_{CE} . [(CO5)(Apply/IOCQ)]

7 + 5 = 12

Group - E

- 8. (a) Explain the operation of an n-channel enhancement type MOSFET along with V-I characteristics. [(CO6)(Understand/LOCQ)]
 - (b) Write voltage-current relations for n-channel MOSFET under linear and saturation modes. [(CO4)(Remember/LOCQ)]
 - (c) What is channel length modulation? How does it affect the voltage-current relation of n-channel MOSFET devices? [(CO4)(Analyze/IOCQ)]

5 + 4 + 3 = 12

- 9. (a) Explain the formation of accumulation layer in a MOS structure with p-type substrate using proper energy band diagram. Can this layer be used as channel? –explain. [(CO6)(Analyze/IOCQ)]
 - (b) Define flat band voltage and threshold voltage for MOS devices.

[(CO6)(Understand/LOCQ)]

(c) Consider an ideal n-channel MOSFET with channel length L=1.25 μ m, μ_n = 650cm²/V-s, C_{ox} =6.9 × 10⁻⁸ F/cm² and V_T = 0.65V. If the saturation drain current I_D (sat)= 4mA for V_{GS} = 5V, evaluate the channel width W.

[(CO4)(Evaluate/HOCQ)]

(3+2)+4+3=12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	33.33	41.67	25.00