MATHEMATICS - II (MTH1201)

Time Allotted : 2½ hrs	Full Marks : 60
------------------------	-----------------

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

1.

	<u>any 4 (four)</u> fi	rom Group B to	E, taking <u>one</u> fi	rom each group.	
andida	tes are required	l to give answer	in their own w	: $(d) \frac{1}{12}.$ In and unit variance, then $E(X^2)$ is $(d) -1$ It tween $(d) 3 \text{ and } 4.$ It valogous with Taylor series expansion $(d) 5 \text{ terms.}$ $(b) \text{ one vertex of degree two}$ $(d) \text{ two vertices of degree one.}$ If the interval is the in	
		Gro	up – A		
Answe	er any twelve:			12 × 1 = 1	2
	Choo	se the correct alte	ernative for the fo	llowing	
(i)		ole X has the follow, $-2 < x < 1$, elsewhere' and k is $(b) \frac{1}{2}$	owing pdf: $(c)^{\frac{1}{4}}$	(d) 1	
	U	Z	4	12	
(ii)	If X is normally (a) 0	distributed with a (b) 1	zero mean and ur (c) 2		
(iii)	One of the roots (a) 0 and 1	of $x^2 + 5x - 3 =$ (b) 1 and 2		(d) 3 and 4.	
(iv)	up to first				n
			(c) 4 terms	(d) 5 terms.	
(v)	A binary tree ha (a) two vertices (c) one vertex of	of degree two	` ,	G	
(vi)		pendant vertices in (b) $\frac{n-1}{2}$		aving n vertices (d) n .	
(vii)	The value of $\Gamma\left(\frac{3}{2}\right)$	$\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right)$ is (b) $\sqrt{2}\pi$	(c) $2\sqrt{\pi}$	(d) $\frac{\pi}{\sqrt{2}}$.	
(viii)	$\mathcal{L}\lbrace e^{-2t}\cos t\rbrace \text{ is}$ (a) $\frac{s+2}{s^2+4s+5}$	(b) $\frac{s}{s^2 + 4s + 5}$	$(c)\frac{s+1}{s^2+4s+1}$	(d) $\frac{s+3}{s^2+4s+5}$	

	(a) 6.27×10^{-3} (b) 6.27×10^{-5} (c) 6.27×10^{-2} (d) 6.27×10^{3} .		
	Fill in the blanks with the correct word		
(xi)	If a binary tree has 20 pendant vertices, then the number of internal vertices of the tree is		
(xii)	$L^{-1}\left(\frac{24}{(p+1)^5}\right) = \underline{\hspace{1cm}}.$		
(xiii)	In the LU factorization method, a matrix A can be factorized into $A = LU$, where L is		
(xiv)	Rounding off the number 0.004935 to 3 significant figures, we get		
(xv)	5 boys and 3 girls are seated randomly in a row. The probability that no boy sits between 2 girls is		
	Group - B		
(a)	There are two identical urns containing 4 white, 3 red balls and 3 white 7 red balls respectively. An urn is chosen at random and a ball is drawn from it. If the ball drawn is white, then what is the probability that it is from the first urn?		
(b)	[(MTH1201.1, MTH1201.2)(Understand /LOCQ)] Marks obtained by 1000 students to a final examination are found to be normally distributed with mean 70 and standard deviation 5. Estimate the number of students whose marks will be (i) between 60 and 79, both inclusive.		
	(ii) below 40. [(MTH1201.1, MTH1201.2) (Evaluate /HOCQ)] $6 + 6 = 12$		
(a)	Determine the value of k such that $f(x) = \begin{cases} k \ x(1-x), & 0 < x < 1 \\ 0, & elsewhere \end{cases}$ is a possible p. d. f of a continuous random variable X . Determine the distribution		
(b)	function of X and $E(X)$. [(MATH1201.1, MATH1201.2) (Remember/LOCQ)] Suppose that an airplane engine will fail, when in flight, with probability $1-p$ independently from engine to engine; suppose that the airplane will make a successful flight if at least 50 percent of its engines remain operative. For what values of p is a four-engine plane preferable to a two-engine plane? [(MATH1201.1, MATH1201.2)(Analyse/IOCQ)] $6+6=12$		

 $(c)\frac{5\pi}{4}$

If the number 37.46235 rounded off to four significant digits then the percentage

(d) $\sqrt{\pi}$.

The value of $\beta\left(-\frac{3}{2}, \frac{7}{2}\right)$ is $(a) -\frac{5\pi}{2} \qquad (b) \frac{5\pi}{2}$

of error is

(ix)

(x)

2.

3.

Group - C

4. (a) Solve the following system of equations using Gauss-Seidel method.

$$6x + 15y + 2z = 72$$

$$x + y + 54z = 110$$

$$27x + 6y - z = 85.$$

[(MTH1201.3)(Apply/IOCQ)]

(b) Find a real root of the equation $x^3 - 2x - 5 = 0$ using Regula-Falsi method correct to three places of decimal. [(MTH1201.3)(Evaluate/HOCQ)]

6 + 6 = 12

- 5. (a) Using Runge Kutta method of fourth order, find y(1.4) for $\frac{dy}{dx} = 3x + y^2$, y(1) = 1 by taking h = 0.2. [(MATH1201.3)(Apply/IOCQ)]
 - (b) Using Newton-Raphson method evaluate $\sqrt[5]{3}$, correct upto four decimal places. [(MATH1201.3)(Apply/IOCQ)]

6 + 6 = 12

Group - D

- 6. (a) Prove that the number of edges in a simple graph with n vertices cannot exceed $\frac{n(n-1)}{n(n-1)}$. [(MTH1201.4)(Remember/LOCQ)]
 - (b) Find the graph whose incidence matrix is the following:

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

[(MTH1201.4)(Understand/LOCQ)]

(c) Find a spanning tree of the following graph by BFS algorithm.

[(MTH1201.4)(Apply/IOCQ)]

4 + 4 + 4 = 12

7. (a) Use Kruskal's algorithm to find a minimal spanning tree of the following graph.

[(MTH1201.4)(Apply/IOCQ)]

Show that the number of vertices in a binary tree is always odd. (b)

[(MTH1201.4)(Understand/LOCQ)]

Find the minimum and maximum no. of edges of a simple graph with ten (c) vertices and 3 components. [(MTH1201.4)(Understand/LOCQ)]

6 + 4 + 2 = 12

Group - E

Evaluate $\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt$ (a) 8.

[(MTH1201.5, MTH1201.6)(Evaluate/HOCQ)]

Using Laplace Transform, find the solution of the initial value problem (b) $y'' - 3y' + 2y = 4t + e^{3t}$, given that y(0) = 1 and y'(0) = -1

[(MTH1201.5, MTH1201.6)(Apply/IOCQ)]

6 + 6 = 12

Evaluate the integral $\int_0^\infty te^{-3t} sint \ dt$. (a) 9.

[(MTH1201.5, MTH1201.6)(Evaluate/HOCQ)]

(b)

[(MTH1201.5, MTH1201.6)(Evaluate/HOCQ)]

Find $\mathcal{L}^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$. Prove that $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{sin\theta}} \times \int_0^{\frac{\pi}{2}} \sqrt{sin\theta} d\theta = \pi$. (c)

[(MTH1201.5, MTH1201.6)(Understand/LOCQ)]

4 + 4 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	31.25	41.67	27.08