ADVANCED DISCRETE MATHEMATICS AND STATISTICAL METHODS (MATH 5101)

			(MA	TH 5101)		
Ti	me All	otted: 2½ h	rs		Full Marks	: 60
		Figures	s out of the right	t margin indica	te full marks.	
			idates are requi <u>)</u> from Group B t		roup A and from each group.	
C	andida	tes are requir	red to give answ	er in their own	words as far as practica	ble.
			Gr	oup – A		
1.	Answ	er any twelve:	12 × 1	= 12		
		Ch	oose the correct a	lternative for the	following	
	(i)	of a rolling of	a die once is		point on the top face in the	case
		(a) $\frac{1}{6}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{1}{4}$	
	(ii)	Two coins are (a) $\frac{3}{4}$	tossed. The prob $(b) \frac{1}{2}$	ability of getting $(c) \frac{1}{4}$	at least one head is $(d) \frac{2}{3}$	
	(iii)	The variance (a) $\{E(X)\}^2$ (c) $E(X^2) - \{E(X)\}^2$	of a random varia $E(X)$ 2	(b) <i>E</i> ($X^2) X^2) - E(X)$	
	(iv)		dian, mode of the (b) 2, 2, 3		3, -1, 4, 3, 0, 0, 3, 3 are (d) None	
	(v)	The mean of t (a) μ	the Poisson distriby (b) μ^2	oution with paran (c) $-\mu$	neter μ is (d) $-\mu^2$	
	(vi)	The sum of th (a) 2 ¹⁰	e coefficients in th (b) 2 ⁹	ne expression of ((c) 3 ¹⁰	$(x + y + z)^{10}$ is (d) 3^9	
	(vii)	The greatest (a) 3	common divisor o (b) 1	f two consecutive (c) 2	Fibonacci numbers is (d) 4	
	(viii)	The number of (a) 5040	of ways in which 8 (b) 40320	people can sit ar (c) 720	ound a table is (d) 120	
	(ix)	The chromati	c number of a tree	e with six vertices	is	

(c) 3

(b) 3 edges

(d) 4 vertices

(d) 2

(b) 7

The dual of K_3 , the complete graph having 3 vertices, has

(a) 6

(a) 3 vertices

(c) 2 edges

(x)

Fill in the blanks with the correct word

(xi)	The positive square root of the variance of a random variable X is called the of X .
(xii)	The number of possible mobile phone numbers of 10 digits is
(xiii)	A die is tossed. If the number that turns up is odd, the probability that it is prime is
(xiv)	The number of edges in the dual of a simple planar graph having 6 edges
(vv)	The chromatic polynomial of a tree having 8 vertices is

Group - B

- 2. (a) A and B are two independent witnesses. The probability that A will speak the truth is x and the probability that B will speak the truth is y. A and B agree in a certain statement. Show that the probability that the statement is true is $\frac{xy}{1-x-y+2xy}.$ [(MATH 5101.1, MATH5101.2)(Analyse/IOCQ)]
 - (b) If 4 balls are drawn (i) with replacement or (ii) without replacement from an urn containing 8 white and 3 black balls, then find the expectation of the number of white balls in the cases (i) and (ii). [(MATH 5101.1, MATH5101.2)(Understand/LOCQ)]

6 + 6 = 12

3. (a) If *A* and *B* are independent events, then show that the following pairs are also independent:

(i) \bar{A} and \bar{B} , (ii) A and \bar{B} , (iii) \bar{A} and B. [(MATH 5101.1, MATH5101.2)(Remember/LOCQ)]

(b) In a bolt factory, machine *A*, *B*, *C* manufacture respectively 25%, 35% and 40% of the total. Of their output 5%, 4%, and 2% are defective bolts. A bolt is drawn at random from their product and is found to be defective. What are the probabilities that it was manufactured by machine *A*, *B* and *C*.

[(MATH 5101.1, MATH5101.2)(Evaluate/HOCQ)]

6 + 6 = 12

Group - C

- 4. (a) The overall percentage of failures in a certain examination is 40. What is the probability that out of a group of 6 candidates at least 4 passed the examinations? [(MATH5101.1,MATH5101.2)(Analyse/IOCO)]
 - (b) The mean of a normal distribution is 50 and 5% of the values are greater than 60. Find the standard deviation of the distribution (Given that the area under the standard normal curve between z = 0 and z = 1.64 is 0.45).

[(MATH5101.1,MATH5101.2)(Remember/LOCQ)]

6 + 6 = 12

5. (a) Out of two regression lines given by x + 4y + 3 = 0 and 4x + 9y + 5 = 0, which one is the regression line of y on x? Find the mean of x and mean of y. Also find the correlation coefficient between x and y. Estimate the value of x when y = 1.4.

[(MATH5101.1,MATH5101.2)(Evaluate/HOCQ)]

(b) The table below gives the marks obtained in a test in mathematics.

Marks (x)	1 – 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60
No of Students	3	16	26	31	16	8

Calculate the mean and standard deviation of the distribution.

[(MATH5101.1,MATH5101.2)(Remember/LOCQ)]

6 + 6 = 12

Group - D

- 6. (a) Determine the number of subsets of a set with n elements. Justify your answer in detail. [(MATH5101.1,MATH5101.2,MATH5101.3)(Understand/IOCQ)]
 - (b) In how many ways can 7 women and 3 men be arranged in a row if the 3 men must always stand next to each other? Show your work in detail.

[(MATH5101.1,MATH5101.2,MATH5101.3)(Analyse/IOCQ)]

6 + 6 = 12

7. (a) Solve the following recurrence relations by the method of characteristic roots: (i) $a_n - 7a_{n-1} + 12a_{n-2} = 0$, for $n \ge 2$, where $a_0 = 2$, $a_1 = 5$. (ii) $a_n - 5a_{n-1} + 6a_{n-2} = 0$, for $n \ge 2$, where $a_0 = 2$, $a_1 = 5$.

[(MATH5101.1,MATH5101.2,MATH5101.3)(Apply/IOCQ)]

(b) Using the pigeonhole principle, prove that, given any set of 7 distinct integers, there must exist 2 integers in this set whose sum or difference is divisible by 10.

[(MATH5101.1,MATH5101.2,MATH5101.3)(Apply/IOCQ)]

6 + 6 = 12

Group - E

- 8. (a) Prove that a simple connected planar graph G having n vertices and e edges determines f = e n + 2 regions. [(MATH5101.1,MATH5101.2,MATH5101.4)(Remember/LOCQ)]
 - (b) Let G be a simple connected planar graph with n vertices, e edges and f regions. Then (i) $e \ge \frac{3}{2}f$, (ii) $e \le 3n-6$. [(MATH5101.1,MATH5101.2,MATH5101.4)(Remember/LOCQ)]

6 + 6 = 12

9. (a) (i) Prove that K_4 , the complete graph having four vertices, is planar. (ii) Prove that K_6 , the complete graph having six vertices, is non-planar. State any theorem that you use. State any theorem that you use.

[(MATH5101.1,MATH5101.2,MATH5101.4)(Analyse/IOCQ)]

(b) Prove that a bipartite graph cannot contain a cycle of odd length.

[(MATH5101.1,MATH5101.2,MATH5101.4)(Analyse/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	37.5	50	12.5