ADVANCED DATA STRUCTURES (CSEN 5101)

Full Marks: 60 Time Allotted: 2½ hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

1.

any 4 (four) from Group B to E, taking one from each group.						
ındida	tes are require	d to give answe	r in their own	words as	far as practi	cable.
		Gro	oup – A			
Answe	er any twelve:				12 ×	1 = 12
	Cho	ose the correct al	ternative for the	following		
(i)	The time complete (a) O(log n)	exity of Heapify (b) O(n)	operation on an (c) O(n * log	-	elements is (d) O(n²)	
(ii)	(a) In a full bin(b) A binary tre(c) A binary tre	ne following state ary tree, each noo ee is simply an ord ee is a k-ary tree er of internal node	le is either a leaf lered tree in whi with k = 2	ch each nod	le has degree at	most 2
(iii)	operators have Which of the following	llowing correctly d * is evaluated?	ning: / 2 3 * + 5 1 * -	op two ele	ments of the st	
(iv)		, the number of it of degree 2 is 10. (b) 11		_	in the binary t	
(v)	Inorder: 42, 29, Preorder: 10, 2	9, 42, 51, 37, 63 craversal result is 7, 63, 42	s (b) 51	ree results 1, 10, 37, 63), 37, 63, 42	3, 42, 29	W.
(vi)	The minimum rof order m is (a) floor(m/2) (c) floor(1 + m/	number of childre (2)	(b) ce	nodes exce iling(m/2) iling(1 + m		a B-tree

(vii)	The minimum possible number of nodes that can be present in an AVL tree of height 4 is				
	(a) 13	(b) 12	(c) 11	(d) 10.	
(viii)	The maximum nu (a) 124		a B-tree of order 5 (c) 624	and height 3 is (d) 626.	
(ix)	cases the line se joining p ₃ and p ₄ (a) The segmen (b) The signs of t (c) p ₃ is colinear	egment joining p_1 ? ts p_1p_2 and p_3p_4 sthe cross products (rewith p_1p_2 but it i	and p_2 does not	$d\left(p_2-p_3\right)X\left(p_4-p_3\right)$ are different and p_2	
(x)	m characters, when matching method proportional to (a) m	nere n is much smod is used, the s	naller than m. If a	acters in another string T of naïve (brute-force) pattern a worst-case time roughly (d) m + n	
(xi)				on on a set of size n in	
(AI)	0() t		ty queue operati	on on a sec of size if in	
(xii)	If a hash table is	25% full, its load f	actor is	·	
(xiii)	A balanced BST, storing n points can be built in O() time, if the points are given in sorted order.				
(xiv)	digits with no lea	nding zeroes. If n is	-	ndix 8) notation has 12 octal n hexadecimal (i.e., radix 16) 	
(xv)		rn of pattern matcl	-	d by π . The value of $\pi(2)$ for	
		Grou	p - B		
(a)	Write the pseudo	code of Increase	_Key function for a	max priority queue.	
(b)	17, 8, 4		-	[(CO2)(Understand/LOCQ)] array: 40, 30, 20, 10, 15, 16, er a new value 35 is inserted?	
(c)	Show all the inte An array contair numbers in ascer	rmediate steps. as the numbers as	•	[(CO2)(Understand/LOCQ)] how the steps to sort these	
		0 10 0 10 2	<u> * * </u>	[(CO2)(Apply/IOCQ)]	
				3+4+5=12	

2.

2

- 3. Given input $\{4371, 1323, 6173, 4199, 4344, 9679, 1989\}$ and a Hash function $h(X) = X \mod 10$. Show the results in
 - (i) separate chaining hash table
 - (ii) open addressing hash table using linear probing
 - (iii) open addressing hash table using quadratic probing
 - (iv) open addressing hash table with 2^{nd} hash function $h_2(X) = 7 (X \mod 7)$.

[(CO3)(Analyse/HOCQ)]

 $(4 \times 3) = 12$

Group - C

- 4. (a) What is a Binary Search Tree (BST)? Write a pseudo code to display all the keys in a BST in sorted order. [(CO3)(Understand and Apply/IOCQ)]
 - (b) Showing each step, construct the binary tree whose preorder and postorder sequences are given below:

Preorder: F, B, A, D, C, E, G, I, H

Postorder: A, C, E, D, B, H, I, G, F

[(CO2)(Analyse/IOCQ)]

(c) Same set of values are represented by two BSTs T_1 and T_2 with heights H_1 and H_2 respectively ($H_1 > H_2$). Is T_1 more efficient than T_2 ? Explain. [(CO2)(Analyse/HOCQ)]

(2+3)+5+2=12

- 5. (a) (i) Show the necessary steps of constructing a binary search tree using the following key elements according to the given order of insertion: 20, 15, 30, 5, 17, 25, 37, -5, 7, 23, 33, 45
 - (ii) Now, delete the following keys in sequence from the tree: 7, 20, 15, 37, 30, 5. [(CO3)(Analyse/IOCQ)]
 - (b) Derive the formula for the number of all possible BSTs with N distinct elements. [(CO3)(Apply/IOCQ)]

(4+4)+4=12

Group - D

6. (a) Define B-Tree. Explain one scenario where using a B-tree is beneficial.

[(CO3)(Understand/LOCQ)]

(b) Show the B-tree that results when inserting the keys R, Y, F, X, A, M, C, D, E, T, H, V, L, W, G (in the given sequence using lexicographic ordering). Assume a minimum branching factor of t=3. Show the B-tree just before and after a node split as keys get inserted. [(CO3)(Analyse/IOCQ)]

(2+3)+7=12

- Given a sorted list of n keys, how do we construct a skip list that ensures the average time to search a key in the list is proportional to lg n? Use the following sorted list of 21 keys to illustrate the construction method: 21, 25, 33, 39, 46, 51, 56, 62, 68, 73, 81, 85, 89, 92, 97, 101, 110, 115, 118, 125, 134. [(CO3)(Analyse/HOCQ)]
 - (b) Show the necessary steps of constructing a Red-Black Tree using the following key elements according to the given order of insertion: 8, 18, 5, 15, 17, 25, 40, 80. [(CO3)(Analyse/HOCQ)]

6 + 6 = 12

Group - E

- 8. (a) How is one dimensional range searching performed? Analyse its time complexity. [(CO5)(Analyse/IOCQ)]
 - (b) Given the following table.

DIC.				
Character	Frequency			
A	5			
В	9			
С	12			
D	13			
Е	16			
F	45			

Show all the steps to find out the Huffman code for each of the characters.

[(CO5)(Apply/IOCQ)]

(3+3)+6=12

9. (a) Draw the k-D tree that results from inserting the following points A(2, 3), B(4, 2), C(4, 5), D(3, 3), E(1, 5), F(4, 4), and G(1, 1). Show each intermediate step. [(CO3)(Analyse/IOCQ)]

(b) Show the necessary steps and data of searching the pattern "ATATCG" in the text "GCATCCATATCCATATCGATCG", using Knuth Morris Pratt Algorithm.

[(CO5)(Apply/IOCQ)]

(c) Calculate the number of bits that may be required for encoding the message 'abccbccbaab' deploying Huffman encoding. [(CO5)(Apply/IOCQ)]

4 + 5 + 3 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	12.50	60.42	27.08