ADVANCED ENZYME TECHNOLOGY (BIOT 5131) Time Allotted: 2½ hrs Full Marks: 60 Figures out of the right margin indicate full marks. Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group. Candidates are required to give answer in their own words as far as practicable. | | Grou | p – A | |--|---|--| | Answe | er any twelve: | 12 × 1 = 12 | | | Choose the correct alter | native for the following | | (i) | 1 U of Enzyme is equal to (a) 16.67 nanokatal of enzyme (c) 30.16 nanokatal of enzyme | (b) 67.16 nanokatal of enzyme (d) none of these. | | (ii) | Glutathione is a tripeptide of (a) Glu-Cys-Gly (c) Cys-Leu-Glu | (b) Cys-Gly-Glu
(d) Leu-Glu-Cys | | (iii) | | me of the beads, Vi =Volume of the pores, Vo = (b) Vt = Vg + Vi + Vo (d) Vt = Vg - Vi - Vo | | (iv) | Relation among Partition coefficient (a) $k=K/\beta$ (b) $\beta=Kk$ | at(K), retention factor(k) and Phaseratio(β) is (c) K=k/ β (d) K=k β | | (v) | Modification of antibiotic occur in (a) Penicillin acylase (c) Cellulase | oresence of
(b) Xylanase
(d) None of these | | (vi) | In which immobilization technique, cyanogen bromide activation isdone? (a) Adsorption (b) Covalent Binding (c) Entrapment (d) Cross-linking. | | | (vii) DE value determination occur during the preparation of (a) Corn syrup (b) Grapes juice (c) Beer (d) None of these. | | (b) Grapes juice | | (viii) | The light absorbance difference du (a) a potentiometric biosensor (c) an optical biosensor | ring a biochemical reaction is measured in (b) a piezo-electric biosensor (d) a calorimetric biosensor | | | (i) (ii) (iii) (iv) (v) (vi) | (a) 16.67 nanokatal of enzyme (c) 30.16 nanokatal of enzyme (ii) Glutathione is a tripeptide of (a) Glu-Cys-Gly (c) Cys-Leu-Glu (iii) In gel chromatography, if Vg =Volume Void Volume and Vt= Total Volume (a) Vt = Vg + Vi - Vo (c) Vg = Vt + Vi + Vo (iv) Relation among Partition coefficient (a) k=K/β (b) β=Kk (v) Modification of antibiotic occur in partition (a) Penicillin acylase (c) Cellulase (vi) In which immobilization technique (a) Adsorption (c) Entrapment (vii) DE value determination occur during (a) Corn syrup (c) Beer (viii) The light absorbance difference du (a) a potentiometric biosensor | | (IX) | (a) Calorimetric biosensor (c) Oxygen biosensor | (b) Potentiometric bio | | |-------------------|--|--------------------------|--| | (x) | Cancer potentially can be prevented by (a) Injecting with ribonuclease (b) Starving the tumor with asparaginase (c) Starving the body with Asparagine (d) None of these. | | | | | Fill in the blanks with the c | orrect word | | | (xi) | Glucose isomerase enzyme is mainly used | l in | preparation. | | (xii) | Glutaraldehyde is used inn | nethod of enzyme imm | obilization. | | (xiii) | If the solvent in a column chromatograph is called chromatography. | y is allowed to flow do | wn by gravity, it | | (xiv) | The ratio of the molar concentration in the in the liquid phase is known as | _ | ar concentration | | (xv) | Thermistors are used in biose | ensors. | | | | Group - B | | | | (a)
(b)
(c) | Enumerate the mechanism of enzyme act
Write notes on three types of enzyme inh
Illustrate the role of High Pressure Homo | ibitors. | (CO1)(Analyse/HOCQ)]
[(CO1)(Explain/IOCQ)]
[(CO2)(Apply/HOCQ)]
4 + 4 + 4 = 12 | | (a) | Illustrate the effects of substrate concentr | ration on enzyme activi | | | (b) | What are the advantages of microbial enz | | | | (c) | Illustrate the role of Ultrasonic cell disrup | | (0.1) (Understand/LOCQ)]
(0.02) (Describe/HOCQ)]
(0.02) (0.02) (0.02) | | | Group - C | | | | (a) | Derive the relation between Partition of factor. | coefficient, Phase ratio | and Retention [(CO3)(Derive/IOCQ)] | | (b)
(c) | Design Packed Bed Reactor as Immobilize State the advantages of Entrapment meth | od of enzyme immobili | [(CO3)(Design/IOCQ)] | | (a) | Briefly describe the process of Glutathion | | agged method.
(CO3)(Describe/HOCQ) | | (b) | Design CSTR as Immobilized Enzyme Bior | | [CO3](Describe/HOCQ)]
[CO3)(Desian/HOCO)] | 2. 3. 4. 5. (c) State the characteristics of an ideal adsorbent. [(CO3)(Remember/LOCQ)] 4 + 5 + 3 = 12 ## Group - D 6. (a) Mention the role of asparaginase and glucoamylase in baking industry. [(CO3)(Analyse/HOCQ)] (b) Analyse the mode of action of penicillin acylase. [(CO3)(Analyse/HOCQ)] (c) Mention the role of biopulpingin paper industry. [(CO2)(Apply/IOCQ)] 4 + 4 + 4 = 12 - 7. (a) Compare the mode of action between liquefying amylase and saccharifying amylase. [(CO3)(Analyse/HOCQ)] - (b) Analyse the application of different enzymes in wine production. [(CO3)(Analyse/HOCQ)] (c) Write the name of any one recombinant enzyme and its application. [(CO2)(Apply/IOCQ)] (d) Mention the mode of action of alpha galactosidase. [(CO2)(Apply/IOCQ)] 4 + 4 + 2 + 2 = 12 ## Group - E - 8. (a) What are non-invasive biosensors? Give examples. [(CO3)(Analyse/HOCQ)] - (b) Genetic engineering has a huge potential for economic enzyme production Discuss. [(CO2)(Apply/IOCQ)] - (c) Discuss the working principle of a potentiometric biosensor with a suitable diagram. [(CO2)(Apply/IOCQ)] (2+2)+3+5=12 - 9. (a) How asparaginase has been found to be promising in treatment of tumors? Mention its mechanism of action. [(CO3)(Analyse/HOCQ)] - (b) What enzyme can be used to treat leukaemia? Discuss its mechanism of action. [(CO2)(Apply/IOCQ)] (3+3)+(3+3)=12 | Cognition Level | LOCQ | IOCQ | HOCQ | |-------------------------|------|-------|------| | Percentage distribution | 9.38 | 40.62 | 50 |