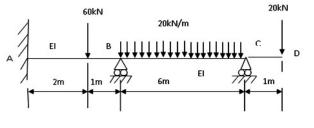
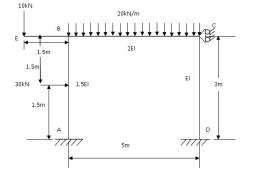
B.TECH/CE/5TH SEM/CIVL 3101/2016


(viii) The ratio of Collapse Load (W_c) for a fixed beam under UDL (throughout) and a simply supported beam under point load at midspan is

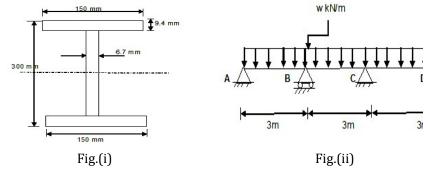
(a) 1:2 (b) 1:1 (c) 2:1 (d) 1:3.


- (ix) For approximate analysis of lateral loads, the portal method is applicable for
 - (a) only vertical loading on building frame
 - (b) only lateral loading on building frame
 - (c) both vertical as well as lateral loading on building frame(d) none of these.
- (x) Flexibility method is analogous to
 (a) force method
 (c) energy method
- (b) displacement method(d) none of these.

Group – B

 Find the bending moment and draw the bending moment diagram for the beam shown in Fig. by slope-deflection method, if support B sinks by 9 mm. Given EI=1×12¹² N- mm².

3. Find the moments at the critical sections. Draw the bending moment diagram for the frame shown in Fig. by moment distribution method

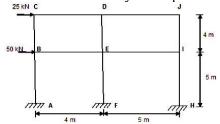

2

B.TECH/CE/5TH SEM/CIVL 3101/2016

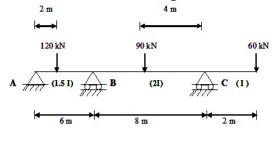
shown below, Fig.(i) represents the I-steel section and Fig.(ii) $\!\!\!\!\!:$ the continuous beam ABCD. M_p is same throughout the beam out the following:

(i) Find the shape factor of the beam.

(ii) Determine the collapse loads (w kN/m) acting throughout beam.


Group – E

12


8.

9.

Determine the forces in the members of the building frame s below by portal method or cantilever method. Show all the mo at each joints of the frame neatly in a separate frame diagram.

Analyse the continuous beam using stiffness matrix method.

12

CIVL 3101

5

B.TECH/CE/5TH SEM/CIVL 3101/2016

ANALYSIS OF STRUCTURES II (CIVL 3101)

Time Allotted : 3 hrs

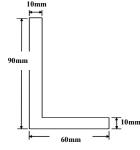
Full Marks : 70

Figures out of the right margin indicate full marks.

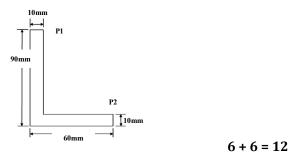
Candidates are required to answer Group A and anv 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

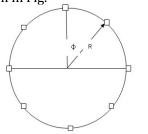
Group – A (Multiple Choice Type Questions)


1. Choose the correct alternative for the following:

10 × 1	l = 10
---------------	--------

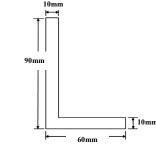

(i)	(a) if it is sul(b) if its geore	r portal will ha ojected to hori netry is nonsy ling is unsymn ove.	zontal load mmetric	l sway			
(ii)	(a) displacen	slope deflection method of structural analysis is displacement method (b) force method					
	(c) hybrid m	ethod		(d) none of th	nese.		
(iii)	The carry ove (a) 0	er factor in a pr (b) 2	ismatic memb	hatic member whose far end is hinged is (c) 0.5 (d) 1.			
(iv)	Distribution f (a) 0.5	actor for an ov (b) 1	erhanging bea (c) 0	am for a cantilever portion is (d) none of the above.			
(v)	Cables and arches are used to span(a) large opening(b) small opening(c) very small opening(d) none of these.				•		
(vi)	Plastic moment of a propped cantilever (length L) under UDL (wmetre run) is(a) $w_uL/11.656$ (b) $w_uL/2/11.656$ (c) $w_uL/121.656$ (d) $w_uL/8.656$.						
(vii)	If the number of possible plastic hinges are 4 and the degree of indeterminacy of the structure is 2, then the number of possible independent mechanism(s) 'n' will be						
CIVL 3101	(a) 6	(b) 4	1	(c) 2	(d) 1.		

Group – C

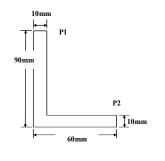

4. (a) Determine the centroidal principal moment of inertia of the unequal angle section $90 \times 60 \times 10$ mm as shown in Fig.

(b) A 90mm × 60mm × 10mm unequal angle is placed with the larger leg vertical as shown in Fig. It is subjected to a sagging bending moment of 700 N-m on the horizontal axis. Determine the stresses induced at points P1 and P2.

5. (a) Determine the shear force, bending moment and torsional moment at different points of a circular ring beam supported at n number of columns as shown in Fig.

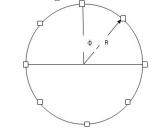


(b) A crane hook of circular cross section of diameter 80 mm has axis curved in the form of a circular arc of radius 110 mm. Determine the


B.TECH/CE/5TH SEM/CIVL 3101/2016

Group – C

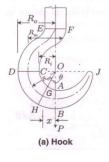
4. (a) Determine the centroidal principal moment of inertia of the ur angle section $90 \times 60 \times 10$ mm as shown in Fig.



(b) A 90mm × 60mm × 10mm unequal angle is placed with the larg vertical as shown in Fig. It is subjected to a sagging bending m of 700 N-m on the horizontal axis. Determine the stresses indu points P1 and P2.

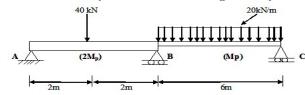
6+6

5. (a) Determine the shear force, bending moment and torsional me at different points of a circular ring beam supported at n num columns as shown in Fig.

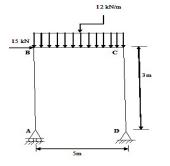

(b) A crane hook of circular cross section of diameter 80 mm ha curved in the form of a circular arc of radius 110 mm. Determin

CIVL 3101

3


B.TECH/CE/5TH SEM/CIVL 3101/2016

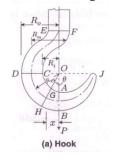
maximum tensile and compressive stresses, if a load P=20kN is suspended from the hook with its line of action passing through the centre of curvature as shown in Fig.



Group – D

6. (a) Determine the plastic moment capacity for the continuous beam shown below. The loads provided are working loads. (Take λ_s =1.5).

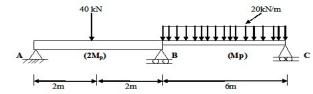
(b) A portal frame ABCD with a single bay is loaded up to collapse. Determine the plastic moment of resistance required if the section is uniform throughout. M_p is same throughout the frame.

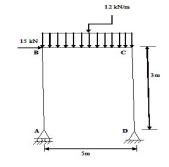

6 + 6 = 12

7. The continuous beam ABCD rests on four supports A, B, C, D. The continuous beam ABCD is constructed using ISLB 300 section. As

CIVL 3101

B.TECH/CE/5TH SEM/CIVL 3101/2016


maximum tensile and compressive stresses, if a load P=20 suspended from the hook with its line of action passing throug centre of curvature as shown in Fig.


6+6

6. (a) Determine the plastic moment capacity for the continuous shown below. The loads provided are working loads. (Take λ_s =:

(b) A portal frame ABCD with a single bay is loaded up to col Determine the plastic moment of resistance required if the sec uniform throughout. M_p is same throughout the frame.

6+(

7. The continuous beam ABCD rests on four supports A, B, C, I continuous beam ABCD is constructed using ISLB 300 sectio

4